Membrane properties are determined by their morphology, which may be symmetric (dense) or asymmetric (dense/porous). Two membrane types based on the poly[(4,4′-oxydiphenylene)pyromelliteimide] (symmetric dense and asymmetric dense/porous) were prepared for a comparative study of morphology, physical properties, and transport characteristics in the pervaporation of methanol/MTBE mixture over a wide range of concentrations including the azeotropic composition. The asymmetric membrane is a good example of improving the transport properties of the polyimide by creating structure composed of a thin dense top layer on the surface of sponge-like microporous substrate. It was found that the use of the asymmetric membrane allows increasing the total flux in separation of azeotropic mixture by 15 times as compared with the dense membrane.
In this study, novel composites were produced by blending partially cyclized polyacrylonitrile (cPAN) and poly(amide-imide) (PAI) in N-methylpyrrolidone in order to fabricate asymmetric membranes via phase inversion method. The compatibility of PAI and cPAN through possible intermolecular interaction was examined by quantum chemical calculations. The composite membranes were characterized by FTIR, SEM, contact angle measurements, etc. A considerable reduction in the contact angles of water and ethylene glycol (EG) was observed after adding cPAN to the PAI membrane, which is evidence of improved membrane hydrophilicity. Membrane transport properties were investigated in ultrafiltration tests by measuring the pure water flux, rejection of proteins, and flux recovery ratio (FRR). The best properties were found for the membrane containing 5 wt% cPAN; an increase in BSA rejection and a remarkable increase in FRR were observed, which can be explained by the hydrophilization of the membrane surface provided by the presence of cPAN.
Modification of polymer matrix by hybrid fillers is a promising way to produce membranes with excellent separation efficiency due to variations in membrane structure. High-performance membranes for the pervaporation dehydration were produced by modifying poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) to facilitate lactic acid purification. Ionic liquid (IL), heteroarm star macromolecules (HSM), and their combination (IL:HSM) were employed as additives to the polymer matrix. The composition and structure of hybrid membranes were characterized by X-ray diffraction and FTIR spectroscopy. Scanning electron microscopy was used to investigate the membranes surface and cross-section morphology. It was established that the inclusion of modifiers in the polymer matrix leads to the change of membrane structure. The influence of IL:HSM was also studied via sorption experiments and pervaporation of water‒lactic acid mixtures. Lactic acid is an essential compound in many industries, including food, pharmaceutical, chemical, while the recovering and purifying account for approximately 50% of its production cost. It was found that the membranes selectively remove water from the feed. Quantum mechanical calculations determine the favorable interactions between various membrane components and the liquid mixture. With IL:HSM addition, the separation factor and performance in lactic acid dehydration were improved compared with pure polymer membrane. The best performance was found for (HSM: IL)-PPO/UPM composite membrane, where the permeate flux and the separation factor of about 0.06 kg m−2 h−1 and 749, respectively, were obtained. The research results demonstrated that ionic liquids in combination with star macromolecules for membrane modification could be a promising approach for membrane design.
The presence of sulfur-containing impurities in petroleum naphtha causes a decrease in the cost and quality of fuels, a reduction in the service life of car engines, and an increase in the amount of harmful emissions into the atmosphere. Pervaporation is an alternative cost-effective fuel desulfurization method. In this study, hybrid membranes based on poly(2,6-dimethyl-1,4-phenylene oxide) and a star-shaped modifier for the pervaporation separation of a thiophene/n-octane model mixture is developed. Hybrid star-shaped macromolecules comprising six polystyrene arms and six poly(2-vinylpyridine)-block-poly(tert-butyl methacrylate) diblock copolymer arms grafted onto a common fullerene C 60 central core are used as the modifier. Membrane structure is analyzed by scanning electron microscopy and atomic force microscopy. Thermal properties are studied by differential scanning calorimetry. The separation properties of the membranes are determined at low thiophene concentrations (up to 0.08 wt %). It is shown that the introduction of a starshaped modifier leads to an increase in the extraction efficiency of sulfur-containing impurities from octane, which is the main fuel component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.