Germanium (Ge) nanowires were fabricated by electrochemical deposition on titanium‐coated silicon substrate. Arrays of nanowires with different mean diameters were obtained using indium nanoparticles of various sizes as centers of nucleation. Raman spectroscopy was used to establish the structural properties of nanowires under different laser excitation intensities. Cycles of measurements with different intensities demonstrated irreversible changes in the structure. Initial study with minimal excitation intensity of 3 W/cm2 displayed that the spectra are descriptive of amorphous Ge. Further study at increased intensities led to the transformation of Raman spectra to the shapes that can be attributed to crystalline Ge. Detailed analysis of spectra shapes for samples with different mean diameters of Ge nanowires after exposure to high intensity laser radiation allows to estimate the fraction of the crystalline phase in Ge nanowires. The spectra of a sample irradiated by He–Ne laser were compared with thermally annealed sample in a vacuum at 150 °C. A similar shape of the obtained spectra indicates on the thermal nature of the effect, which leads to a change in the observed structural properties. This change under even slight heating can be explained by thermal isolation of nanowires from the substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.