This study is focused on comparative analysis of gamma-aminobutyric acid-positive (GABAergic) neuronal populations in primary visual cortex of totally aquatic toothed whales and select terrestrial mammals with different evolutionary histories and various ecological adaptations. The distribution of neuronal populations containing the calcium-binding proteins calbindin and parvalbumin, which are recognized markers for the GABAergic neurons in cerebral cortex, is compared in five species of toothed whales and in representatives (one species each) of insectivores, bats, rodents, and primates. Computerized image analysis has shown that overall quantitative characteristics of GABAergic cortical neurons in toothed whales are similar to those in other mammalian orders. Thus, GABA-positive neurons represent 26% of the total population of cortical neurons in the visual cortex of whales. Some 97% of GABA-positive cells contain calcium-binding proteins, which is numerically similar to these parameters found in primates and other mammals. On the other hand, the typology and laminar distribution of calcium-binding protein-containing neurons in the primary visual cortex of five whale species (Delphinapterus leucas, Globicephala melaena, Phocoena phocoena, Stenella coeruleoalba, and Tursiops truncatus) differ significantly from those of primates (Macaca mulatta) and rodents (Rattus rattus) and are similar to those found in insectivorous bats (Eptesicus fuscus) and hedgehogs (Erinaceus europaeus). In whales, bats, and hedgehogs a significant concentration of calbindin-positive, vertically oriented bipolar and bitufted neurons was found in layers I, II, and IIIc/V with their axons arranged in a three-dimensional network. In primates and rodents they are distributed evenly across all cortical layers and are predominantly multipolar or bitufted neurons found in all cortical layers with their axons oriented along the vertical axis of the cortical plate. The parvalbumin-positive neurons in all mammalian species, including toothed whales, are represented by variously sized multipolar non-pyramidal cells. As opposed to all other mammalian species, the major concentrations of parvalbumin-positive neurons in whales are found in layers IIIc/V and VI, whereas in other cortical layers there are only scattered parvalbumin-positive neurons.(ABSTRACT TRUNCATED AT 400 WORDS)
We review the evidence for the concept of the “initial” or prototype brain. We outline four possible modes of brain evolution suggested by our new findings on the evolutionary status of the dolphin brain. The four modes involve various forms of deviation from and conformity to the hypothesized initial brain type. These include examples of conservative evolution, progressive evolution, and combinations of the two in which features of one or the other become dominant. The four types of neocortical organization in extant mammals may be the result of selective pressures on sensory/motor systems resulting in divergent patterns of brain phylogenesis. A modular “modification/multiplication” hypothesis is proposed as a mechanism of neocortical evolution in eutherians. Representative models of the initial ancestral group of mammals include not only extant basal Insectivora but also Chiroptera; we have found that dolphins and large whales have also retained many features of the archetypal or initial brain. This group evolved from the initial mammalian stock and returned to the aquatic environment some 50 million years ago. This unique experiment of nature shows the effects of radical changes in environment on brain-body adaptations and specializations. Although the dolphin brain has certain quantitative characteristics of the evolutionary changes seen in the higher terrestrial mammals, it has also retained many of the conservative structural features of the initial brain. Its neocortical organization is accordingly different, largely in a quantitative sense, from that of terrestrial models of the initial brain such as the hedgehog.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.