In the present study, powder of FeCoCrNiMo0.5Al1.3 HEA was manufactured by gas atomization process, and then used for laser powder bed fusion (L-PBF) and microplasma spraying (MPS) technologies. The processes of phase composition and microstructure transformation during above mentioned processes and subsequent heat treatment were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and differential thermal analysis (DTA) methods. It was found that gas atomization leads to a formation of dendrites of body centered cubic (BCC) supersaturated solid solution with insignificant Mo-rich segregations on the peripheries of the dendrites. Annealing leads to an increase of element segregations till to decomposition of the BCC solid solution and formation of σ-phase and B2 phase. Microstructure and phase composition of L-PBF sample are very similar to those of the powder. The MPS coating has a little fraction of face centered cubic (FCC) phase because of Al oxidation during spraying and formation of regions depleted in Al, in which FCC structure becomes more stable. Maximum hardness (950 HV) is achieved in the powder and L-PBF samples after annealing at 600 °C. Elastic modulus of the L-PBF sample, determined by nanoindentation, is 165 GPa, that is 12% lower than that of the cast alloy (186 GPa).
Poly-(4,4′-oxydiphenylene) pyromellitimide or Kapton is the most widely available polyimide with high chemical and thermal stability. It has great prospects for use as a membrane material for filtering organic media due to its complete insolubility. However, the formation of membranes based on it, at the moment, is an unsolved problem. The study corresponds to the rediscovery of poly(4,4′-oxydiphenylene–pyromellitimide)-based soluble copoly(urethane-imides) as membrane polymers of a new generation. It is shown that the physical structure of PUI films prepared by the solution method becomes porous after the removal of urethane blocks from the polymer, and the pore size varies depending on the conditions of thermolysis and subsequent hydrolysis of the membrane polymer. The film annealed at 170 °C with a low destruction degree of polycaprolactam blocks exhibits the properties of a nanofiltration membrane. It is stable in the aprotic solvent DMF and has a Remasol Brilliant Blue R retention coefficient of 95%. After the hydrolysis of thermally treated films in acidic media, ultrafiltration size 66–82 nm pores appear, which leads to an increase in the permeate flow by more than two orders of magnitude. This circumstance provides opportunities for controlling the membrane polymer structure for further optimization of the performance characteristics of filtration membranes based on it. Thus, we proposed a new preparation method of ultra- and nanofiltration membranes based on poly(4,4′-oxydiphenylene–pyromellitimide) that are stable in aprotic solvents.
A series of unidirectional thermoplastic tapes (UD tapes) specimens based on carbon fibers and polyamide filled with fullerene soot in a concentration of up to 4 wt. % was made. A study of the tribological properties by the 3 Ball on Plate test and Ring on Plate test and was made. Shown that the introduction of fullerene soot up to 2 wt. % decreases scatter of CoF in both ranges of load and velocity. Also, this concentration decreases wear rate almost 2.5 times compare to unfilled specimen. Mechanism of friction and wear was suggested. The obtained tribological results are well consistent with mechanical properties, and agree with previously suggested theory of the effect of fullerene soot on adhesion between polymer and fibers.
In this work, we studied the influence of the geometry and degree of filling of glass dispersed particles on the optical and mechanical properties of flexible high-transmission composites, based on thermoplastic polyurethane. Glass spheres, glass flake and milling glass fiber were used as fillers. Studies of mechanical properties have shown that the introduction of any filler leads to a decrease in tensile strength and an increase in the elastic modulus of the composite material, however, with the introduction of glass flakes and milling glass fiber, a significant increase in the yield strength of the material is observed. The optical properties of composites with glass spheres decrease exponentially with an increase in the volume fraction of the filler. With an increase in the concentration of glass flakes and milling glass fiber to 10 vol.%, a sharp decrease in transmission is observed. With a further increase in concentration, the orientation of the filler along the film occurs, due to which the transmission in the visible range increases to values close to those of a pure polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.