Research on language modeling for speech recognition has increasingly focused on the application of neural networks. Two competing concepts have been developed: On the one hand, feedforward neural networks representing an ngram approach, on the other hand recurrent neural networks that may learn context dependencies spanning more than a fixed number of predecessor words.To the best of our knowledge, no comparison has been carried out between feedforward and state-of-the-art recurrent networks when applied to speech recognition. This paper analyzes this aspect in detail on a well-tuned French speech recognition task. In addition, we propose a simple and efficient method to normalize language model probabilities across different vocabularies, and we show how to speed up training of recurrent neural networks by parallelization.
This paper describes recent advances at LIMSI in Mandarin Chinese speech-to-text transcription. A number of novel approaches were introduced in the different system components. The acoustic models are trained on over 1600 hours of audio data from a range of sources, and include pitch and MLP features. N-gram and neural network language models are trained on very large corpora, over 3 billion words of texts; and LM adaptation was explored at different adaptation levels: per show, per snippet, or per speaker cluster. Character-based consensus decoding was found to outperform word-based consensus decoding for Mandarin. The improved system reduces the relative character error rate (CER) by about 10% on previous GALE development and evaluation data sets, obtaining a CER of 9.2% on the P4 broadcast news and broadcast conversation evaluation data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.