Recent research shows end-to-end ASR systems can recognize overlapped speech from multiple speakers. However, all published works have assumed no latency constraints during inference, which does not hold for most voice assistant interactions. This work focuses on multi-speaker speech recognition based on a recurrent neural network transducer (RNN-T) that has been shown to provide high recognition accuracy at a low latency online recognition regime. We investigate two approaches to multi-speaker model training of the RNN-T: deterministic output-target assignment and permutation invariant training. We show that guiding separation with speaker order labels in the former case enhances the high-level speaker tracking capability of RNN-T. Apart from that, with multistyle training on single-and multi-speaker utterances, the resulting models gain robustness against ambiguous numbers of speakers during inference. Our best model achieves a WER of 10.2% on simulated 2-speaker LibriSpeech data, which is competitive with the previously reported state-of-the-art nonstreaming model (10.3%), while the proposed model could be directly applied for streaming applications.
Significant performance degradation of automatic speech recognition (ASR) systems is observed when the audio signal contains cross-talk. One of the recently proposed approaches to solve the problem of multi-speaker ASR is the deep clustering (DPCL) approach. Combining DPCL with a state-of-the-art hybrid acoustic model, we obtain a word error rate (WER) of 16.5 % on the commonly used wsj0-2mix dataset, which is the best performance reported thus far to the best of our knowledge. The wsj0-2mix dataset contains simulated cross-talk where the speech of multiple speakers overlaps for almost the entire utterance. In a more realistic ASR scenario the audio signal contains significant portions of single-speaker speech and only part of the signal contains speech of multiple competing speakers. This paper investigates obstacles of applying DPCL as a preprocessing method for ASR in such a scenario of sparsely overlapping speech. To this end we present a data simulation approach, closely related to the wsj0-2mix dataset, generating sparsely overlapping speech datasets of arbitrary overlap ratio. The analysis of applying DPCL to sparsely overlapping speech is an important interim step between the fully overlapping datasets like wsj0-2mix and more realistic ASR datasets, such as CHiME-5 or AMI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.