International audience3D meshes are subject to various visual distortions during their transmission and geometrical processing. Several works have tried to evaluate the visual quality using either full reference or reduced reference approaches. However, these approaches require the presence of the reference mesh which is not available in such practical situations. In this paper, the main contribution lies in the design of a computational method to automatically predict the perceived mesh quality without reference and without knowing beforehand the distortion type. Following the no-reference (NR) quality assessment principle, the proposed method focuses only on the distorted mesh. Specifically, the dihedral angles are firstly computed as a surface roughness indexes and so a structural information descriptors. Then, a visual masking modulation is applied to this angles according to the main characteristics of the human visual system. The well known statistical Gamma model is used to fit the dihedral angles distribution. Finally, the estimated parameters of the model are learned to the support vector regression (SVR) in order to predict the quality score. Experimental results demonstrate the highly competitive performance of the proposed no-reference method relative to the most influential methods for mesh quality assessment
International audienceNo-reference quality assessment is a challenging issue due to the non-existence of any information related to the reference and the unknown distortion type. The main goal is to design a computational method to objectively predict the human perceived quality of a distorted mesh and deal with the practical situation when the reference is not available. In this work, we design a no reference method that relies on the general regression neural network (GRNN). Our network is trained using the mean curvature which is an important perceptual feature representing the visual aspect of a 3D mesh. Relatively to the human subjective scores, the trained network successfully assesses the visual quality, in addition, the experimental results show that the proposed method provides good correlations with the subject scores and competitive scores comparing to some influential and effective full and reduced reference existing metrics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.