The Principal Component Analysis (PCA) is a powerful technique for extracting structure from possibly high-dimensional data sets. It is readily performed by solving an eigenvalue problem, or by using iterative algorithms that estimate principal components. This paper proposes a new method for online identification of a nonlinear system modelled on Reproducing Kernel Hilbert Space (RKHS). Therefore, the PCA technique is tuned twice, first we exploit the Kernel PCA (KPCA) which is a nonlinear extension of the PCA to RKHS as it transforms the input data by a nonlinear mapping into a high-dimensional feature space to which the PCA is performed. Second, we use the Reduced Kernel Principal Component Analysis (RKPCA) to update the principal components that represent the observations selected by the KPCA method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.