A general pharmacophore model of P-glycoprotein (P-gp) drugs is proposed that is based on a highly diverse data set and relates to the verapamil binding site of the protein. It is derived from structurally different drugs using the program GASP. The pharmacophore model consists of two hydrophobic points, three hydrogen bond (HB) acceptor points, and one HB donor point. Pharmacophore patterns of various drugs are obtained, and different binding modes are presumed for some of them. It is concluded that the binding affinity of the drugs depends on the number of the pharmacophore points simultaneously involved in the interaction with P-gp. On the basis of the obtained results, a hypothesis is proposed to explain the broad structural variety of the P-gp substrates and inhibitors: (i) the verapamil binding site of P-gp has several points that can participate in hydrophobic and HB interactions; (ii) different drugs can interact with different receptor points in different binding modes.
Multidrug resistance, MDR, is a major obstacle in the chemotherapeutic treatment of cancer. MDR can be reversed by drugs that vary widely in their chemical structure and main biological action. Many efforts are directed to find out the relationships between the structure and MDR reversal effect of these drugs. In this review we try to summarize the results of a variety of studies on identification of structure-activity relationships, SARs, and quantitative SARs, QSARs, of different MDR reversing drugs. As any reasonable (Q)SAR study relies on a real or putative presentation about the mechanism of action of the studied compounds, the most significant MDR mechanisms revealed till now are shortly discussed. Special attention is paid to P-glycoprotein, P-gp, related MDR as the most experimentally and clinically tested form of drug resistance. The currently proposed models of P-gp functioning and mechanisms of MDR modulation are presented. Problems that can arise in (Q)SARs studies are discussed in advance to allow the reader to judge on possible pitfalls. The physicochemical and structural properties of MDR modulators as found by different research groups are commented and summarized. From the discussed studies it can be concluded that the careful selection of relevant structural and biological data processed with appropriate QSAR and especially 3D-QSAR methods, is a promising approach to structure-activity studies of MDR reversers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.