BackgroundMetformin is a widely used first-line drug for treatment of type 2 diabetes. Despite its advantages, metformin has variable therapeutic effects, contraindications, and side effects. Here, for the very first time, we investigate the short-term effect of metformin on the composition of healthy human gut microbiota.MethodsWe used an exploratory longitudinal study design in which the first sample from an individual was the control for further samples. Eighteen healthy individuals were treated with metformin (2 × 850 mg) for 7 days. Stool samples were collected at three time points: prior to administration, 24 hours and 7 days after metformin administration. Taxonomic composition of the gut microbiome was analyzed by massive parallel sequencing of 16S rRNA gene (V3 region).ResultsThere was a significant reduction of inner diversity of gut microbiota observed already 24 hours after metformin administration. We observed an association between the severity of gastrointestinal side effects and the increase in relative abundance of common gut opportunistic pathogen Escherichia-Shigella spp. One week long treatment with metformin was associated with a significant decrease in the families Peptostreptococcaceae and Clostridiaceae_1 and four genera within these families.ConclusionsOur results are in line with previous findings on the capability of metformin to influence gut microbiota. However, for the first time we provide evidence that metformin has an immediate effect on the gut microbiome in humans. It is likely that this effect results from the increase in abundance of opportunistic pathogens and further triggers the occurrence of side effects associated with the observed dysbiosis. An additional randomized controlled trial would be required in order to reach definitive conclusions, as this is an exploratory study without a placebo control arm. Our findings may be further used to create approaches that improve the tolerability of metformin.
The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput studies, the quantitative analyses need to address the heterogeneity of data, specific statistical properties, and the remarkable variation in microbiome composition across individuals and body sites. This has led to a broad spectrum of statistical and machine learning challenges that range from study design, data processing, and standardization to analysis, modeling, cross-study comparison, prediction, data science ecosystems, and reproducible reporting. Nevertheless, although many statistics and machine learning approaches and tools have been developed, new techniques are needed to deal with emerging applications and the vast heterogeneity of microbiome data. We review and discuss emerging applications of statistical and machine learning techniques in human microbiome studies and introduce the COST Action CA18131 “ML4Microbiome” that brings together microbiome researchers and machine learning experts to address current challenges such as standardization of analysis pipelines for reproducibility of data analysis results, benchmarking, improvement, or development of existing and new tools and ontologies.
Background The study was conducted to investigate the effects of metformin treatment on the human gut microbiome’s taxonomic and functional profile in the Latvian population, and to evaluate the correlation of these changes with therapeutic efficacy and tolerance. Methods In this longitudinal observational study, stool samples for shotgun metagenomic sequencing-based analysis were collected in two cohorts. The first cohort included 35 healthy nondiabetic individuals (metformin dose 2x850mg/day) at three time-points during metformin administration. The second cohort was composed of 50 newly-diagnosed type 2 diabetes patients (metformin dose–determined by an endocrinologist) at two concordant times. Patients were defined as Responders if their HbA1c levels during three months of metformin therapy had decreased by ≥12.6 mmol/mol (1%), while in Non-responders HbA1c were decreased by <12.6 mmol/mol (1%). Results Metformin reduced the alpha diversity of microbiota in healthy controls (p = 0.02) but not in T2D patients. At the species level, reduction in the abundance of Clostridium bartlettii and Barnesiella intestinihominis , as well as an increase in the abundance of Parabacteroides distasonis and Oscillibacter unclassified overlapped between both study groups. A large number of group-specific changes in taxonomic and functional profiles was observed. We identified an increased abundance of Prevotella copri (FDR = 0.01) in the Non-Responders subgroup, and enrichment of Enterococcus faecium , Lactococcus lactis , Odoribacter , and Dialister at baseline in the Responders group. Various taxonomic units were associated with the observed incidence of side effects in both cohorts. Conclusions Metformin effects are different in T2D patients and healthy individuals. Therapy induced changes in the composition of gut microbiome revealed possible mediators of observed short-term therapeutic effects. The baseline composition of the gut microbiome may influence metformin therapy efficacy and tolerance in T2D patients and could be used as a powerful prediction tool.
Metformin is the first-line pharmacotherapy for managing type 2 diabetes (T2D). However, many patients with T2D do not respond to or tolerate metformin well. Currently, there are no phenotypes that successfully predict glycemic response to, or tolerance of, metformin. We explored whether blood-based epigenetic markers could discriminate metformin response and tolerance by analyzing genome-wide DNA methylation in drug-naïve patients with T2D at the time of their diagnosis. DNA methylation of 11 and 4 sites differed between glycemic responders/nonresponders and metformin-tolerant/intolerant patients, respectively, in discovery and replication cohorts. Greater methylation at these sites associated with a higher risk of not responding to or not tolerating metformin with odds ratios between 1.43 and 3.09 per 1-SD methylation increase. Methylation risk scores (MRSs) of the 11 identified sites differed between glycemic responders and nonresponders with areas under the curve (AUCs) of 0.80 to 0.98. MRSs of the 4 sites associated with future metformin intolerance generated AUCs of 0.85 to 0.93. Some of these blood-based methylation markers mirrored the epigenetic pattern in adipose tissue, a key tissue in diabetes pathogenesis, and genes to which these markers were annotated to had biological functions in hepatocytes that altered metformin-related phenotypes. Overall, we could discriminate between glycemic responders/nonresponders and participants tolerant/intolerant to metformin at diagnosis by measuring blood-based epigenetic markers in drug-naïve patients with T2D. This epigenetics-based tool may be further developed to help patients with T2D receive optimal therapy.
Effects of metformin, the first-line drug for type 2 diabetes therapy, on gut microbiome composition in type 2 diabetes have been described in various studies both in human subjects and animals. However, the details of the molecular mechanisms of metformin action have not been fully understood. Moreover, there is a significant lack of information on how metformin affects gut microbiome composition in female mouse models, depending on sex and metabolic status in well controlled experimental setting. Our study aimed to examine metformin-induced alterations in gut microbiome diversity, composition, and functional implications of high-fat diet-induced type 2 diabetes mouse model, using, for the first time in mice study, the shotgun metagenomic sequencing that allows estimation of microorganisms at species level. We also employed a randomized block, factorial study design, and including 24 experimental units allocated to 8 treatment groups to systematically evaluate the effect of sex and metabolic status on metformin interaction with microbiome. We used DNA obtained from fecal samples representing gut microbiome before and after ten weeks-long metformin treatment. We identified 100 metformin-related differentially abundant species in high-fat diet-fed mice before and after the treatment, with most of the species relative abundances increased. In contrast, no significant changes were observed in control diet-fed mice. Functional analysis targeted to carbohydrate, lipid, and amino acid metabolism pathways revealed 14 significantly altered hierarchies. We also observed sex-specific differences in response to metformin treatment. Males experienced more pronounced changes in metabolic markers, while in females the extent of changes in gut microbiome representatives was more marked, indicated by 53 differentially abundant species with more remarkable Log fold changes compared to the combined-sex analysis. The same pattern manifested regarding the functional analysis, where we discovered 5 significantly affected hierarchies in female groups but not in males. Our results suggest that both sexes of animals should be included in future studies focusing on metformin effects on the gut microbiome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.