Biomimetic architectural assembly of clay nanotube shells on yeast cells was demonstrated producing viable artificial hybrid inorganic-cellular structures (armoured cells). These modified cells were preserved for one generation resulting in the intact second generation of cells with delayed germination.
Here we report the three-dimensional assembly of carbon nanotubes on the polyelectrolyte-coated living Saccharomyces cerevisiae cells using the polyelectrolyte-mediated layer-by-layer approach. Synthetic polyelectrolytes poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) were layer-by-layer deposited on the surfaces of the yeast cells followed by the deposition of water-soluble oxidized multiwalled carbon nanotubes (MWNTs) and an additional outermost polyelectrolyte bilayer. This resulted in the fabrication of polyelectrolyte/nanotubes composite coatings on the cell walls of the yeast cells, which could be clearly seen using the conventional optical microscopy. Transmission and scanning electron microscopy was applied to further investigate the composite coatings. Viability of the encapsulated cells was confirmed using the intercellular esterase activity test. Finally, electrochemical studies using voltammetry and electrochemical impedance measurements were performed, indicating that the composite polyelectrolytes/MWNTs coatings sufficiently affect the electron mediation between the encapsulated yeast cells and the artificial electron acceptor, making it possible to distinguish between living and dead cells. The technique described here may find potential application in the development of microelectronic devices, core-shell and hollow composite microparticles, and electrochemical cell-based biosensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.