Microwave radiation in Escherichia coli and Bacillus subtilis cell suspensions resulted in a dramatic reduction of the viable counts as well as increases in the amounts of DNA and protein released from the cells according to the increase of the final temperature of the cell suspensions. However, no significant reduction of cell density was observed in either cell suspension. It is believed that this is due to the fact that most of the bacterial cells inactivated by microwave radiation remained unlysed. Scanning electron microscopy of the microwave-heated cells revealed severe damage on the surface of most E. coli cells, yet there was no significant change observed in the B. subtilis cells. Microwave-injured E. coli cells were easily lysed in the presence of sodium dodecyl sulfate (SDS), yet B. subtilis cells were resistant to SDS.
An improved extraction method for ethyl carbamate, a genotoxic and carcinogenic compound found in various fermented foods and beverages, was investigated for its determination in the two most typical Korean traditional rice wines, takju and yakju. When the rice wines were extracted twice with chloroform at 30 degrees C for 60 min, the recovery of ethyl carbamate was less than 16%. When they were saturated with NaCl before extraction, the recovery of ethyl carbamate increased to 24.4% in takju and 67.2% in yakju. Adjustment of pH to 9.0 after NaCl saturation in takju resulted in a dramatic increase of recovery to 81.2%, but not in yakju. When the contents of ethyl carbamate and its precursor, urea, in various Korean traditional rice wines were determined, there was no correlation between the two contents. This is due to the fact that storage time is more important than urea content in the formation of ethyl carbamate in rice wine. In addition, its storage at high temperature resulted in a dramatic increase in ethyl carbamate content according to the prolonged storage time, suggesting that storage time and temperature play a key role in the formation of ethyl carbamate in Korean traditional rice wine.
Inhibition of Saccharomyces cerevisiae arginase (CAR1) gene expression was investigated using the antisense RNA technique. CAR1 DNA fragments containing the yeast CAR1 gene sequences from the transcription initiation site (-49) or translation initiation site (+1) to the +501 region were amplified using PCR and inversely fused to the yeast CYC1 promoter on the yeast YIp5 plasmid. These recombinant plasmids were transformed into yeast cells to construct strains containing CYC1 promoter-antisense CAR1 DNA in their chromosomal DNA. When the CAR1 DNA region from -120 to +552 was amplified by PCR, the CYC1 promoter-antisense CAR1 DNA plasmid transformants produced the same size of PCR fragments as vector only transformants, suggesting the recombinant plasmids did not integrate into the CAR1 loci. The level of arginase production by the recombinant transformants markedly decreased to about 15% of the enzyme activity produced by the vector only transformants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.