Detection of clustered microcalcifications (MCs) in mammograms represents a significant step towards successful detection of breast cancer since their existence is one of the early signs of cancer. In this paper, a new framework that integrates Bayesian classifier and a pattern synthesizing scheme for detecting microcalcification clusters is proposed. This proposed work extracts textural, spectral, and statistical features of each input mammogram and generates models of real MCs to be used as training samples through a simplified learning phase of the Bayesian classifier. Followed by an estimation of the classifier's decision function parameters, a mammogram is segmented into the identified targets (MCs) against background (healthy tissue). The proposed algorithm has been tested using 23 mammograms from the mini-MIAS database. Experimental results achieved MCs detection with average true positive (sensitivity) and false positive (specificity) of 91.3% and 98.6%, respectively. Results also indicate that the modeling of the real MCs plays a significant role in the performance of the classifier and thus should be given further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.