Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR). High-dose EPO administration, amplifying auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Singlecell sequencing reveals rapid increase in newly differentiating neurons. Importantly, improved performance on complex running wheels after EPO is imitated by exposure to mild exogenous/inspiratory hypoxia. All these effects depend on neuronal expression of the Epor gene. This suggests a model of neuroplasticity in form of a fundamental regulatory circle, in which neuronal networks-challenged by cognitive tasks-drift into transient hypoxia, thereby triggering neuronal EPO/EPOR expression. 1 1234567890():,;E rythropoietin (EPO) is a hypoxia-inducible growth factor in mammalian kidney, named after its role in hematopoiesis 1,2 . Unexpectedly, both EPO and its receptor (EPOR) were later detected in the brain, where they are upregulated by injury conditions. High-dose recombinant human (rh) EPO, a drug in clinical use for anemic patients, exerts neuroprotective and neuroregenerative effects that are independent of the hematocrit, which is mechanistically unexplained 3-8 . Moreover, rhEPO improves cognitive function and reduces gray matter loss in a range of neuropsychiatric conditions 9-13 . Even in healthy mice, rhEPO treatment improves cognition, which is associated with enhanced hippocampal long-term potentiation [14][15][16] . Surprisingly, rhEPO increases the number of mature hippocampal pyramidal neurons without underlying effect on cell proliferation or cell death 17 . This effect is mediated in neurons mainly by JAK-STAT, PI3K/AKT/PKB, Ras-MEK, and ERK1/2, as well as NF-κB; pathways widely comparable to the hematopoietic system [18][19][20] . This raises the question whether the expression of EPO and its receptor serves a physiological function in the nervous system, and what could be the triggering factors of EPO expression under physiological conditions. ResultsGeneration of pyramidal neurons in adult mice and amplification by rhEPO. First, we developed a method to directly label and quantify newly generated neurons in the hippocampal cornu ammonis (CA) field of adult mice. This was possible by permanently labeling all mature pyramidal neurons present at P27 using a tamoxifen-inducible reporter gene in NexCreERT2::R26R-tdT mice (Fig. 1a, b) 21 . Thus, all neurons differentiating and maturing after termination of the tamoxifen-induced Cre recombination lack tdTomato, but can be positively identified by Ctip2, a specific marker of pyramidal neurons, thereby revealing adult 'neurogenesis' independent of DNA synt...
Recombinant human erythropoietin (EPO) improves cognitive performance in neuropsychiatric diseases ranging from schizophrenia and multiple sclerosis to major depression and bipolar disease. This consistent EPO effect on cognition is independent of its role in hematopoiesis. The cellular mechanisms of action in brain, however, have remained unclear. Here we studied healthy young mice and observed that 3-week EPO administration was associated with an increased number of pyramidal neurons and oligodendrocytes in the hippocampus of ~20%. Under constant cognitive challenge, neuron numbers remained elevated until >6 months of age. Surprisingly, this increase occurred in absence of altered cell proliferation or apoptosis. After feeding a 15N-leucine diet, we used nanoscopic secondary ion mass spectrometry, and found that in EPO-treated mice, an equivalent number of neurons was defined by elevated 15N-leucine incorporation. In EPO-treated NG2-Cre-ERT2 mice, we confirmed enhanced differentiation of preexisting oligodendrocyte precursors in the absence of elevated DNA synthesis. A corresponding analysis of the neuronal lineage awaits the identification of suitable neuronal markers. In cultured neurospheres, EPO reduced Sox9 and stimulated miR124, associated with advanced neuronal differentiation. We are discussing a resulting working model in which EPO drives the differentiation of non-dividing precursors in both (NG2+) oligodendroglial and neuronal lineages. As endogenous EPO expression is induced by brain injury, such a mechanism of adult neurogenesis may be relevant for central nervous system regeneration.
BackgroundErythropoietin (EPO) improves cognition of human subjects in the clinical setting by as yet unknown mechanisms. We developed a mouse model of robust cognitive improvement by EPO to obtain the first clues of how EPO influences cognition, and how it may act on hippocampal neurons to modulate plasticity.ResultsWe show here that a 3-week treatment of young mice with EPO enhances long-term potentiation (LTP), a cellular correlate of learning processes in the CA1 region of the hippocampus. This treatment concomitantly alters short-term synaptic plasticity and synaptic transmission, shifting the balance of excitatory and inhibitory activity. These effects are accompanied by an improvement of hippocampus dependent memory, persisting for 3 weeks after termination of EPO injections, and are independent of changes in hematocrit. Networks of EPO-treated primary hippocampal neurons develop lower overall spiking activity but enhanced bursting in discrete neuronal assemblies. At the level of developing single neurons, EPO treatment reduces the typical increase in excitatory synaptic transmission without changing the number of synaptic boutons, consistent with prolonged functional silencing of synapses.ConclusionWe conclude that EPO improves hippocampus dependent memory by modulating plasticity, synaptic connectivity and activity of memory-related neuronal networks. These mechanisms of action of EPO have to be further exploited for treating neuropsychiatric diseases.
Background and Purpose-Recently, we reported high seroprevalence (age-dependent up to >19%) of N-methyl-daspartate-receptor subunit NR1 (NMdAR1) autoantibodies in both healthy and neuropsychiatrically ill subjects (N=4236). Neuropsychiatric syndrome relevance was restricted to individuals with compromised blood-brain barrier, for example, apolipoprotein E4 (APOE4) carrier status, both clinically and experimentally. We now hypothesized that these autoantibodies may upon stroke be protective in individuals with hitherto intact blood-brain barrier, but harmful for subjects with chronically compromised blood-brain barrier. Methods-Of 464 patients admitted with acute ischemic stroke in the middle cerebral artery territory, blood for NMdAR1 autoantibody measurements and APOE4 carrier status as indicator of a preexisting leaky blood-brain barrier was collected within 3 to 5 hours after stroke. Evolution of lesion size (delta day 7-1) in diffusion-weighted magnetic resonance imaging was primary outcome parameter. In subgroups, NMdAR1 autoantibody measurements were repeated on days 2 and 7. Results-Of all 464 patients, 21.6% were NMdAR1 autoantibody-positive (immunoglobulin M, A, or G) and 21% were APOE4 carriers. Patients with magnetic resonance imaging data available on days 1 and 7 (N=384) were divided into 4 groups according to NMdAR1 autoantibody and APOE4 status. Groups were comparable in all stroke-relevant presenting characteristics. The autoantibody+/APOE4− group had a smaller mean delta lesion size compared with the autoantibody−/ APOE4-group, suggesting a protective effect of circulating NMdAR1 autoantibodies. In contrast, the autoantibody+/APOE4+ group had the largest mean delta lesion area. NMdAR1 autoantibody serum titers dropped on day 2 and remounted by day 7. Conclusions-dependent on blood-brain barrier integrity before an acute ischemic brain injury, preexisting NMdAR1 autoantibodies seem to be beneficial or detrimental.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.