A challenge for greyhound racing is optimizing the tracks to minimize the risk of injuries. The effects of different track design variables on greyhound injury rates has not been explored sufficiently. The purpose of this paper is to present some preliminary findings on the effect of greyhound racetrack design variables such as the track curvature and lure alignment. An analysis was carried out of two years of greyhound racing injury data from three different tracks in New South Wales, Australia. The data from before and after an intervention was introduced were compared. Variables in the study, which may affect\ the analysis were investigated to minimize the errors. The analysis showed that there is a reduction in injury rates for a longer lure arm in the tracks with short or no straight section. To verify the effect of track design variables on the greyhound dynamics a kinematic simulation of greyhound center of gravity was created. The simulation considered fundamental variables correlating directly with kinematics between the greyhound and the track. The simulation data showed that the rate of change in the rotation of the greyhound heading direction decreases when the track running path has a more gradual curvature. The result of the simulation showed excellent agreement with that of injury data analysis.
This paper outlines greyhound dynamics results for yaw rate, speed, and the congestion pattern during a race derived through numerical modelling. The simulation results presented are also correlated to actual race data to validate modelling performance and reliability. The tasks carried out include the development of a numerical model for greyhound veering and race related supporting models, creating track 3D models replicated from actual survey data of the track, establishing a simulation environment that emulates an actual greyhound race, and the processing of both simulation and actual race data. The results show that greyhounds are susceptible to experience varying high acceleration in first five seconds into the race, during which a minimum average forward acceleration of 3.9 m/s 2 was calculated, a peak yaw rate magnitude of 0.4 rad/s before the bend while transitioning into the track, and congestion during a race is affected by lure driving performance.
This study illustrates the application of a tri-axial accelerometer and gyroscope sensor device on a trampolinist performing the walking-the-wall manoeuvre on a high-performance trampoline to determine the performer dynamic conditions. This research found that rigid vertical walls would allow the trampolinist to obtain greater control and retain spatial awareness at greater levels than what is achievable on non-rigid vertical walls. With a non-rigid padded wall, the reaction force from the wall can be considered a variable force that is not constrained, and would not always provide the feedback that the trampolinist needs to maintain the balance with each climb up the wall and fall from height. This research postulates that unattenuated vertical walls are safer than attenuated vertical walls for walking-the-wall manoeuvres within trampoline park facilities. This is because non-rigid walls would provide higher g-force reaction feedback from the wall, which would reduce the trampolinist’s control and stability. This was verified by measuring g-force on a horizontal rigid surface versus a non-rigid surface, where the g-force feedback was 27% higher for the non-rigid surface. Control and stability are both critical while performing the complex walking-the-wall manoeuvre. The trampolinist experienced a very high peak g-force, with a maximum g-force of approximately 11.5 g at the bottom of the jump cycle. It was concluded that applying impact attenuation padding to vertical walls used for walking-the-wall and similar activities would increase the likelihood of injury; therefore, padding of these vertical surfaces is not recommended.
Double bounce is an unusual and potentially very hazardous phenomenon that most trampoline users may have experienced, yet few would have really understood how and why it occurs. This paper provides an in-depth investigation into the double bounce. Firstly, the static and dynamic characteristics of a recreational trampoline are analysed theoretically and verified through experiments. Then, based on the developed trampoline dynamic model, double bounce simulation is conducted with two medicine balls released with different time delays. Through simulation, the process of double bounce is presented in detail, which comprehensively reveals how energy is transferred between users during double bounce. Furthermore, the effect of release time delay on double bounce is also presented. Finally, we conducted an experiment which produced similar results to the simulation and validated the reliability of the trampoline dynamic model and double bounce theoretical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.