Weather is highly influential for human life. Weather anomalies describe conditions that are out of the ordinary and need special attention because they can affect various aspects of human life both socially and economically and also can cause natural disasters. Anomaly detection aims to get rid of unwanted data (noise, erroneous data, or unwanted data) or to study the anomaly phenomenon itself (unusual but interesting). In the absence of an anomaly-labeled dataset, an unsupervised Machine Learning approach can be utilized to detect or label the anomalous data. This research uses the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to separate between normal and anomalous weather data by considering multiple weather variables. Then, PCA is used to visualize the clusters. The experimental result had demonstrated that DBSCAN is capable of identifying peculiar data points that are deviating from the ‘normal’ data distribution.
Virus corona 2019 (corona virus disease/COVID-19) merupakan virus baru yang muncul di Wuhan,China pada akhir tahun 2019, gejala umum yang ditimbulkan dari covid-19 adalah suhu tubuh naik, demam, mati rasa, batuk, nyeri di tenggorokan, kepala pusing, susah bernafas jika virus corona sudah sampai paru-paru. Untuk mengetahui seseorang terjangkit covid-19 pun cukup sulit karena memiliki gejala yang mirip dengan beberapa penyakit lainnya. Deteksi Covid-19 merupakan tahapan penting untuk mengenali secara dini pasien terduga Covid-19 sehingga dapat dilakukan langkah lanjutan. Salah satu cara pendeteksian adalah dengan sistem pendeteksi awal covid-19. Dengan keadaan tersebut tentunya dibutuhkan sistem pakar yang dapat melakukan sebuah deteksi awal terhadap gejala covid-19 . Namun demikian dibutuhkan sebuah metode untuk mengakomodasi faktor-faktor yang ada, sehingga di dapat hasil yang akurat. Metode Certainty Factor dipilih untuk mengakomodasi faktor ketidakpastian untuk diubah menjadi faktor kepastian, certainty factor juga dapat menyatakan kepercayaan dalam sebuah kejadian (fakta atau hipotesa) berdasar bukti atau laporan pakar dengan menggunakan suatu nilai untuk mengasumsikan derajat keyakinan seorang pakar terhadap suatu data.Hasil Penelitian dapat membantu masyarakat untuk melakukan diagnosa mandiri, dan paramedis untuk melakukan diagnosa awal kepada pasien, sehingga dapat mempermudah semua pihak dalam menangani Covid-19.
This research proposes a model of face recognition using the method of joining two face images from left and right lens from a stereo vision camera namely half-join method. Half-join method is used in face image normalization processing. The proposed half-join method is a face images joining model, which is called asymmetrical half-join. In asymmetrical half-join method, a RoI (region of interest) of face image from left and right lenses are provided based on axis center of each eye in eye detection. The cropping of face image from asymmetrical half-join model has different width depends on eyes coordinate location. The proposed system shows that the asymmetrical half-join method can produce a better of face recognition rate. The experimental results show that the asymmetrical half-join method has a better recognition rate and computation time than single vision method and symmetrical half-join method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.