UVB-induced DNA damage plays a critical role in development of photoimmunosuppression. The purpose of this study was to determine whether repair of UVB-induced DNA damage is regulated by Toll-like receptor-4 (TLR4). When TLR4 gene knockout (TLR4-/-) and TLR4 competent (TLR4+/+) mice were subjected to 90 mJ/cm2 UVB radiation locally, DNA damage in the form of CPD, were repaired more efficiently in the skin and bone marrow dendritic cells (BMDC) of TLR4-/- mice in comparison to TLR4+/+ mice. Expression of DNA repair gene XPA (Xeroderma pigmentosum complementation group A) was significantly lower in skin and BMDC of TLR4+/+ mice than TLR4-/- mice after UVB exposure. When cytokine levels were compared in these strains after UVB exposure, BMDC from UV-irradiated TLR4-/- mice produced significantly more interleukin (IL)-12 and IL-23 cytokines (p<0.05) than BMDC from TLR4+/+ mice. Addition of anti-IL-12 and anti-IL-23 antibodies to BMDC of TLR4-/- mice (before UVB exposure) inhibited repair of CPD, with a concomitant decrease in XPA expression. Addition of TLR4 agonist to TLR4+/+ BMDC cultures decreased XPA expression and inhibited CPD repair. Thus, strategies to inhibit TLR4 may allow for immunopreventive and immunotherapeutic approaches for managing UVB-induced cutaneous DNA damage and skin cancer.
Ultraviolet (UV) radiation, in particular the mid-wavelength range (UVB; 290-320 nm), is one of the most significant risk factors for the development of non-melanoma skin cancer. UVB radiation-induced immunosuppression, which occurs in both humans and laboratory animals, contributes to their pathogenesis. However, there are conflicting reports on the relative role of CD4+ and CD8+ T-cells in UVB induced skin cancer. The purpose of this study was to delineate the contribution of these two cell subpopulations to UVB induced immunosuppression and tumor development using C3H/HeN (WT), CD4 knockout (CD4−/−) and CD8 knockout (CD8−/−) mice. We observed that UVB induced skin carcinogenesis was retarded in terms of number of tumors per group, tumor volume and percentage of mice with tumors, in mice deficient in CD4+ T-cells compared to wild-type mice, whereas significantly greater (p<0.05) numbers of tumors occurred in CD8−/− mice. These results indicate that, CD4+ T-cells promote tumor development while CD8+ T-cells have the opposite effect. Further, we found that CD4+ T cells from tumorbearing mice produced IL-4, IL-10, and IL-17 whereas CD8+ T cells produced IFN-γ. Manipulation of T-cell subpopulations that are induced by UVB radiation could be a means of preventing skin cancers caused by this agent.
IMPORTANCE Protective effects of UV-B radiation against nonmelanoma skin cancer (NMSC) are exerted via signaling mechanisms involving the vitamin D receptor (VDR). Recent studies have examined single-nucleotide polymorphisms (SNPs) in the VDR, resulting in contradictory findings as to whether these polymorphisms increase a person's risk for NMSC.OBJECTIVE To examine whether the polymorphisms in the VDR gene are associated with the development of NMSC and the demographic characteristics of the participants. DESIGN, SETTING, AND PARTICIPANTSThis case-control study recruited 100 individuals who received a diagnosis of and were being treated for basal cell carcinoma or squamous cell carcinoma (cases) and 100 individuals who were receiving treatment of a condition other than skin cancer (controls) at the dermatology clinics at the Kirklin Clinic of the University of Alabama at Birmingham Hospital between January 1, 2012, and December 31, 2014. All participants completed a questionnaire that solicited information on skin, hair, and eye color; skin cancer family history; and sun exposure history, such as tanning ability and number of severe sunburns experienced throughout life. Blood samples for DNA genotyping were collected from all participants. MAIN OUTCOMES AND MEASURESPolymorphisms in the VDR gene (ApaI, BsmI, and TaqI) were assessed to determine the association of polymorphisms with NMSC development and demographic characteristics. χ 2 Analysis was used to determine whether genotype frequencies deviated significantly from Hardy-Weinberg equilibrium. Logistic regression was used to calculate odds ratios (ORs) and associated 95% CIs for the identification of factors associated with NMSC diagnosis. A model was created to predict NMSC diagnoses using known risk factors and, potentially, VDR SNPs. RESULTS A total of 97 cases and 100 controls were included. Of the 97 cases, 68 (70%) were men and 29 (30%) were women, with a mean (SD) age of 70 (11) years. Of the 100 controls, 46 (46%) were men and 54 (54%) were women, with a mean (SD) age of 63 (9) years. All participants self-identified as non-Hispanic white. A model including age, sex, and skin color was created to most effectively predict the incidence of skin cancer. Risk factors that significantly increased the odds of an NMSC diagnosis were light skin color (OR, 5.79 [95% CI, 2.79-11.99]), greater number of severe sunburns (OR, 2.59 [95% CI, 1.31-5.10]), light eye color (OR, 2.47 [95% CI, 1.30-4.67]), and less of an ability to tan (OR, 2.35 [95% CI,). The risk factors of family history of NMSC (OR, 1.66 [95% CI, 0.90-3.07]) and light hair color (OR, 1.17 [95% CI, 0.51-2.71]) did not reach statistical significance. Participants with the BsmI SNP were twice as likely to develop NMSC than participants with no mutation (OR, 2.04 [95% CI, 1.02-4.08]; P = .045). CONCLUSIONS AND RELEVANCEThe results of this study are especially useful in the early treatment and prevention of NMSC with chemopreventive agents (for those with the BsmI SNP). A screening for the BsmI SNP may e...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.