Transformation of space coordinates is a tool to synthesize material properties in view of obtaining a controlled electromagnetic field pattern. Also, substrate-integrated waveguide (SIW) technology can well be exploited to develop microwave and millimeter-wave components. In this paper, by combining these features, high-gain SIW planar lens antennas are proposed. Using the embedded transformation-optics lenses, both narrow beamwidth of 12 • and low sidelobe levels of −23 dB are achieved for the H-plane radiation patterns by a single antenna. The designed transformation-optics lenses can be realized by drilling spatially varying cylindrical holes in an ordinary dielectric substrate. The E-plane radiation patterns can also be improved through the dielectric slabs in front of the antenna aperture integrated in the same substrate. Therefore, using SIW technology, the lens antennas can be fabricated on a single substrate. An H-plane sectoral horn and a Maxwell-fisheye-based lens antenna are designed using the proposed method. Simulation results confirm the validity of the proposed idea and the advantages of these lens antennas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.