Mucilage's are plant derived natural polymer which are valuable due to their nontoxicity, low cost and nonirritating nature, with wide range of applications. In this work, extracted mucilage from basil seeds (BSM) was dried using three various drying methods including (1) laboratory oven drying (2) water substitution with organic solvent and laboratory oven drying and (3) water substitution with organic solvent and supercritical carbon dioxide (SC-CO2) gel drying process. The obtained products were characterized by SEM, BET and FTIR and were compared both qualitatively and quantitatively. The results of this study show that, using SC-CO2 assisted process, the 3-D BSM nanostructured networks were obtained with the pores size diameter about 40 nm, without any agglomeration. Furthermore, specifi c area of the fi nal products was increased from 69 to 92 m2/g by SC-CO2 gel drying in compression with air gel drying. Our observations show that, the amount of solvent residual in the SC-CO2 dried product was affected by the weight of sample, CO2 addition rate and drying time. The residual amount of organic solvent (ethanol) for CO2 fl ow rate of 2 mL/min was found to be 8 ppm after 90 min drying time. The FTIR analyses indicated that the nature of fi nal product did not change during supercritical drying procedure. Overall, the ability to form 3-D structures, and bio adhesive property make BSM as a suitable low cost polysaccharide for biomedical applications such as drug delivery medium, wound dressing and also tissue engineering.Applications. Int J Pharm Sci Dev Res 3(1): 030-035. DOI: https://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.