We study the impact of pore structure and surface roughness on capillary trapping of nonwetting gas phase during imbibition with water for capillary numbers between 10−7 and 5 × 10−5, within glass beads, natural sands, glass beads monolayers, and 2‐D micromodels. The materials exhibit different roughness of the pore‐solid interface. We found that glass beads and natural sands, which exhibit nearly the same grain size distribution, pore size distribution, and connectivity, showed a significant difference of the trapped gas phase of about 15%. This difference can be explained by the microstructure of the pore‐solid interface. Based on the visualization of the trapping dynamics within glass beads monolayers and 2‐D micromodels, we could show that bypass trapping controls the trapping process in glass beads monolayers, while snap‐off trapping controls the trapping process in 2‐D micromodels. We conclude that these different trapping processes are the reason for the different trapping efficiency, when comparing glass beads packs with natural sand packs. Moreover, for small capillary numbers of 10−6, we found that the cluster size distribution of trapped gas clusters of all 2‐D and 3‐D porous media can be described by a universal power law behavior predicted from percolation theory. This cannot be expected a priori for 2‐D porous media, because bicontinuity of the two bulk phases is violated. Obviously, bicontinuity holds for the thin‐film water phase and the bulk gas phase. The snap‐off trapping process leads to ordinary bond percolation in front of the advancing bulk water phase and is the reason for the observed universal power law behavior in 2‐D micromodels with rough surfaces.
This paper reports on an experimental study of natural convection in an enclosure that is heated at the bottom and cooled at the top, filled with a packed bed of relatively large solid spheres. Nusselt numbers were measured for various sphere conductivities, spheres sizes and sphere packings for Rayleigh numbers varying between 10 7 and 10 9 . The Nusselt number measurements showed that at lower Rayleigh numbers, the heat transfer is lower than that for pure Rayleigh-Bénard convection, with the difference depending on packing type, size, and conductivity of the spheres. However, at high Rayleigh numbers, there exists an asymptotic regime where the convective contribution of the total heat transfer for all sphere conductivities, sizes, and packing types collapse on a single curve which is very close to the curve for pure Rayleigh-Bénard convection. Refractive index-matching of the fluid and the solid spheres enabled the use of particle image velocimetry and liquid crystal thermography to obtain highly resolved velocity and temperature fields. The comparison of the velocity and temperature fields for the two heat transfer regimes showed that the velocity magnitudes inside the pores in the core region are much higher in the asymptotic regime than those in the low Rayleigh number regime, which lead to a deeper penetration of cold and hot fluid elements and higher heat transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.