Background Assessment of sleep quality is essential to address poor sleep quality and understand changes. Owing to the advances in the Internet of Things and wearable technologies, sleep monitoring under free-living conditions has become feasible and practicable. Smart rings and smartwatches can be employed to perform mid- or long-term home-based sleep monitoring. However, the validity of such wearables should be investigated in terms of sleep parameters. Sleep validation studies are mostly limited to short-term laboratory tests; there is a need for a study to assess the sleep attributes of wearables in everyday settings, where users engage in their daily routines. Objective This study aims to evaluate the sleep parameters of the Oura ring along with the Samsung Gear Sport watch in comparison with a medically approved actigraphy device in a midterm everyday setting, where users engage in their daily routines. Methods We conducted home-based sleep monitoring in which the sleep parameters of 45 healthy individuals (23 women and 22 men) were tracked for 7 days. Total sleep time (TST), sleep efficiency (SE), and wake after sleep onset (WASO) of the ring and watch were assessed using paired t tests, Bland-Altman plots, and Pearson correlation. The parameters were also investigated considering the gender of the participants as a dependent variable. Results We found significant correlations between the ring’s and actigraphy’s TST (r=0.86; P<.001), WASO (r=0.41; P<.001), and SE (r=0.47; P<.001). Comparing the watch with actigraphy showed a significant correlation in TST (r=0.59; P<.001). The mean differences in TST, WASO, and SE of the ring and actigraphy were within satisfactory ranges, although there were significant differences between the parameters (P<.001); TST and SE mean differences were also within satisfactory ranges for the watch, and the WASO was slightly higher than the range (31.27, SD 35.15). However, the mean differences of the parameters between the watch and actigraphy were considerably higher than those of the ring. The watch also showed a significant difference in TST (P<.001) between female and male groups. Conclusions In a sample population of healthy adults, the sleep parameters of both the Oura ring and Samsung watch have acceptable mean differences and indicate significant correlations with actigraphy, but the ring outperforms the watch in terms of the nonstaging sleep parameters.
Improvements in life expectancy achieved by technological advancements in the recent decades have increased the proportion of elderly people. Frailty of old age, susceptibility to diseases, and impairments are inevitable issues that these senior adults need to deal with in daily life. Recently, there has been an increasing demand on developing elderly care services utilizing novel technologies, with the aim of providing independent living. Internet of things (IoT), as an advanced paradigm to connect physical and virtual things for enhanced services, has been introduced that can provide significant improvements in remote elderly monitoring. Several efforts have been recently devoted to address elderly care requirements utilizing IoT-based systems. Nevertheless, there still exists a lack of user-centered study from an all-inclusive perspective for investigating the daily needs of senior adults. In this paper, we study the IoT-enabled systems tackling elderly monitoring to categorize the existing approaches from a new perspective and to introduce a hierarchical model for elderly-centered monitoring. We investigate the existing approaches by considering the elderly requirements at the center of the attention. In addition, we evaluate the main objectives and trends in IoT-based elderly monitoring systems in order to pave the way for future systems to improve the quality of elderly's life.
Remote health monitoring is a powerful tool to provide preventive care and early intervention for populations-at-risk. Such monitoring systems are becoming available nowadays due to recent advancements in Internet-of-Things (IoT) paradigms, enabling ubiquitous monitoring. These systems require a high level of quality in attributes such as availability and accuracy due to patients critical conditions in the monitoring. Deep learning methods are very promising in such health applications to obtain a satisfactory performance, where a considerable amount of data is available. These methods are perfectly positioned in the cloud servers in a centralized cloud-based IoT system. However, the response time and availability of these systems highly depend on the quality of Internet connection. On the other hand, smart gateway devices are unable to implement deep learning methods (such as training models) due to their limited computational capacities. In our previous work, we proposed a hierarchical computing architecture (HiCH), where both edge and cloud computing resources were efficiently exploited, allocating heavy tasks of a conventional machine learning method to the cloud servers and outsourcing the hypothesis function to the edge. Due to this local decision making, the availability of the system was highly improved. In this paper, we investigate the feasibility of deploying the Convolutional Neural Network (CNN) based classification model as an example of deep learning methods in this architecture. Therefore, the system benefits from the features of the HiCH and the CNN, ensuring a high-level availability and accuracy. We demonstrate a real-time health monitoring for a case study on ECG classifications and evaluate the performance of the system in terms of response time and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.