Forest trees cover just over 30% of the earth's surface and are studied by researchers around the world for both their conservation and economic value. With the onset of high throughput technologies, tremendous phenotypic and genomic data sets have been generated for hundreds of species. These long-lived and immobile individuals serve as ideal models to assess population structure and adaptation to environment. Despite the availability of comprehensive data, researchers are challenged to integrate genotype, phenotype, and environment in one place. Towards this goal, CartograTree was designed and implemented as a repository and analytic framework for genomic, phenotypic, and environmental data for forest trees. One of key components, the integration of geospatial data, allows the display of environmental layers and acquisition of environmental metrics relative to the positions of georeferenced individuals.
Forest trees cover just over 30% of the earth's surface and are studied by researchers around the world for both their conservation and economic value. With the onset of high throughput technologies, tremendous phenotypic and genomic data sets have been generated for hundreds of species. These long-lived and immobile individuals serve as ideal models to assess population structure and adaptation to environment. Despite the availability of comprehensive data, researchers are challenged to integrate genotype, phenotype, and environment in one place. Towards this goal, CartograTree was designed and implemented as a repository and analytic framework for genomic, phenotypic, and environmental data for forest trees. One of key components, the integration of geospatial data, allows the display of environmental layers and acquisition of environmental metrics relative to the positions of georeferenced individuals.
Forest trees cover just over 30% of the earth's surface and are studied by researchers around the world for both their conservation and economic value. With the onset of high throughput technologies, tremendous phenotypic and genomic data sets have been generated for hundreds of species. These long-lived and immobile individuals serve as ideal models to assess population structure and adaptation to environment. Despite the availability of comprehensive data, researchers are challenged to integrate genotype, phenotype, and environment in one place. Towards this goal, CartograTree was designed and implemented as an open repository and open-source analytic framework for genomic, phenotypic, and environmental data for forest trees. One of its key components, the integration of geospatial data, allows the display of environmental layers and acquisition of environmental metrics relative to the positions of georeferenced individuals. Currently, CartograTree uses the Google Maps API to load environmental data. Limitations inherent to this API are driving new development with a focus on functionality to provide efficient queries of numerous environmental metrics.
Forest trees cover just over 30% of the earth's surface and are studied by researchers around the world for both their conservation and economic value. With the onset of high throughput technologies, tremendous phenotypic and genomic data sets have been generated for hundreds of species. These long-lived and immobile individuals serve as ideal models to assess population structure and adaptation to environment. Despite the availability of comprehensive data, researchers are challenged to integrate genotype, phenotype, and environment in one place. Towards this goal, CartograTree was designed and implemented as an open repository and open-source analytic framework for genomic, phenotypic, and environmental data for forest trees. One of its key components, the integration of geospatial data, allows the display of environmental layers and acquisition of environmental metrics relative to the positions of georeferenced individuals. Currently, CartograTree uses the Google Maps API to load environmental data. Limitations inherent to this API are driving new development with a focus on functionality to provide efficient queries of numerous environmental metrics.
Forest trees cover just over 30% of the earth's surface and are studied by researchers around the world for both their conservation and economic value. With the onset of high throughput technologies, tremendous phenotypic and genomic data sets have been generated for hundreds of species. These long-lived and immobile individuals serve as ideal models to assess population structure and adaptation to environment. Despite the availability of comprehensive data, researchers are challenged to integrate genotype, phenotype, and environment in one place. Towards this goal, CartograTree was designed and implemented as an open repository and open-source analytic framework for genomic, phenotypic, and environmental data for forest trees. One of its key components, the integration of geospatial data, allows the display of environmental layers and acquisition of environmental metrics relative to the positions of georeferenced individuals. Currently, CartograTree uses the Google Maps API to load environmental data. Limitations inherent to this API are driving new development with a focus on functionality to provide efficient queries of numerous environmental metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.