SUMMARYIn this work, the 3-RPRR, a new kinematically redundant planar parallel manipulator with six-degrees-of-freedom, is presented. First, the manipulator is introduced and its inverse displacement problem discussed. Then, all types of singularities of the 3-RPRR manipulator are analysed and demonstrated. Thereafter, the dexterous workspace is geometrically obtained and compared with the non-redundant 3-PRR planar parallel manipulator. Finally, based on a geometrical measure of proximity to singular configurations and the condition number of the manipulators' Jacobian matrices, actuation schemes for the manipulators are obtained. Different actuation schemes for a given path are obtained and the quality of their actuation schemes are compared. It is shown that the proposed manipulator is capable of following a path while avoiding the singularities.
Testing helmets for different oblique impact angles can help assess their protection capability. The coefficient of friction between the helmet's interior and the headform plays an important role in the headform's rotational acceleration during an impact. Using a standard surface friction for headform similar or close to that of the human scalp can ensure that the results of the oblique impact tests are more consistent and realistic.
Parallel manipulators feature relatively high payload and accuracy capabilities compared to their serial counterparts. However, they suffer from small workspace and low maneuverability. Kinematic redundancy for parallel manipulators can improve both of these characteristics. This paper presents a family of new kinematically redundant planar parallel manipulators with six actuated-joint degrees of freedom based on a 3-PṞRR architecture obtained by adding an active prismatic joint at the base of each limb of the 3-ṞRR manipulator. First, the inverse displacement of the manipulators is explained, then their reachable and dexterous workspaces are obtained. Comparing the proposed redundant manipulators to the original 3-ṞRR nonredundant manipulator, both reachable and dexterous workspaces are substantially larger. Next, the Jacobian matrices of the manipulators are derived, and different types of singularities are analyzed and demonstrated. It is shown that the vast majority of singularities can be avoided by using kinematic redundancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.