A major step toward fully integrated quantum optics is the deterministic incorporation of high quality single photon sources in on-chip optical circuits. We show a novel hybrid approach in which preselected III-V single quantum dots in nanowires are transferred and integrated in silicon based photonic circuits. The quantum emitters maintain their high optical quality after integration as verified by measuring a low multiphoton probability of 0.07 ± 0.07 and emission line width as narrow as 3.45 ± 0.48 GHz. Our approach allows for optimum alignment of the quantum dot light emission to the fundamental waveguide mode resulting in very high coupling efficiencies. We estimate a coupling efficiency of 24.3 ± 1.7% from the studied single-photon source to the photonic channel and further show by finite-difference time-domain simulations that for an optimized choice of material and design the efficiency can exceed 90%.
Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III–V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III–V quantum emitters are positioned and deterministically integrated in a complementary metal–oxide–semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies’ full potential.
Light scattering by biological tissues sets a limit to the penetration depth of high-resolution optical microscopy imaging of live mammals in vivo. An effective approach to reduce light scattering and increase imaging depth is by extending the excitation and emission wavelengths to the > 1000 nm second near-infrared (NIR-II), also called the short-wavelength infrared (SWIR) window. Here, we show biocompatible core-shell lead sulfide/cadmium sulfide (PbS/CdS) quantum dots emitting at ~1880 nm and superconducting nanowire single photon detectors (SNSPD) for single-photon detection up to 2000 nm, enabling one-photon excitation fluorescence imaging window in the 1700–2000 nm (NIR-IIc) range with 1650 nm excitation, the longest one-photon excitation and emission for in vivo mouse imaging to date. Confocal fluorescence imaging in NIR-IIc reached an imaging depth of ~ 1100 μm through intact mouse head, and enabled non-invasive cellular-resolution imaging in the inguinal lymph nodes (LNs) of mice without any surgery. We achieve In vivo molecular imaging of high endothelial venules (HEVs) with diameter down to ~ 6.6 μm and CD169+ macrophages and CD3+ T cells in the lymph nodes, opening the possibility of non-invasive intravital imaging of immune trafficking in lymph nodes at the single-cell/vessel level longitudinally.
Single photon detectors are indispensable tools in optics, from fundamental measurements to quantum information processing. The ability of superconducting nanowire single photon detectors (SNSPDs) to detect single photons with unprecedented efficiency, short dead time, and high time resolution over a large frequency range enabled major advances in quantum optics. However, combining near-unity system detection efficiency (SDE) with high timing performance remains an outstanding challenge. In this work, we fabricated novel SNSPDs on membranes with 99.5−2.07+0.5% SDE at 1350 nm with 32 ps timing jitter (using a room-temperature amplifier), and other detectors in the same batch showed 94%–98% SDE at 1260–1625 nm with 15–26 ps timing jitter (using cryogenic amplifiers). The SiO2/Au membrane enables broadband absorption in small SNSPDs, offering high detection efficiency in combination with high timing performance. With low-noise cryogenic amplifiers operated in the same cryostat, our efficient detectors reach a timing jitter in the range of 15–26 ps. We discuss the prime challenges in optical design, device fabrication, and accurate and reliable detection efficiency measurements to achieve high performance single photon detection. As a result, the fast developing fields of quantum information science, quantum metrology, infrared imaging, and quantum networks will greatly benefit from this far-reaching quantum detection technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.