The current study focuses on the production of cellulose nanofiber through semi-industrial nozzleless electrospinning process. The cellulose biopolymer used for spinning process was extracted from rice straw as renewable, abundant, and inexpensive natural resource. The electrospinning device comprising one needle is extremely inefficient because of low productivity level of about 0.3 g/h. Thus, using the nozzleless electrospinning system guarantees the high productivity of nanofiber web for diverse applications. The successful electrospinning process is accomplished through systematic control of the surface tension, viscosity, and electric conductivity of aqueous solutions of cellulose. Moreover, a design expert software was used for providing experimental plan for the investigation of the influence of the operational conditions on the spinning properties of the selected solution. The polyvinyl alcohol with a weight ratio of 60 % relative to cellulose content was used as a biocompatible polymer to facilitate electrospinning process for producing the aqueous cellulose solution of 0.63 wt%. Based on the scanning electron microscopy images, and various selected parameters, namely, the drum rotation rate of 9 rpm, high voltage range of ±55 kV, the spinning temperature of 41°C, and 10-cm distance between drum and collector an average diameter of 89 ± 1 nm was arrived. The composite nanofibers used for filter production and their performance were evaluated by porosity analysis and permeability tests. Results show the negative impact of the weak mechanical strength as an obstacle in Penetration test. (It promotes by higher electrospinning time and reaching proper stiffness in web layer.) The permeability tests show a maximum value of 3.5 cm 3 /cm 2 /s at the maximum pressure of 120 Pa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.