One‐pot and three components C‐S bond formation reactions in thioethers and S‐aryl‐carbamodithioates have been catalyzed by a copper heterogeneous nano‐catalyst supported on modified AlPO4 under different reaction conditions. The above‐mentioned nano‐catalyst has been characterized by various techniques such as SEM, TEM, AFM, XRD, FT‐IR, UV–Vis, CV, BET, TGA, ICP and XPS spectrometry and its particle size was estimated to be between 60–110 nm. Finally, the reusability of the catalyst up to ten cycles without any significant leaching is one of the outstanding properties of the catalyst.
In this study, 3D printing of poly-l-lactic acid (PLLA) scaffolds reinforced with graphene oxide (GO) nanoparticles via Digital Light Processing (DLP) was investigated to mimic bone tissue. Stereolithography is one of the most accurate additive manufacturing method, but the dominant available materials used in this method are toxic. In this research, a biocompatible resin (PLLA) was synthetized and functionalized to serve the purpose. Due to the low mechanical properties of the printed product with the neat resin, graphene oxide nanoparticles in three levels (0.5, 1, and 1.5 Wt.%) were added with the aim of enhancing the mechanical properties. At first, the optimum post cure time of the neat resin was investigated. Consequently, all the parts were post-cured for three hours after printing. Due to the temperature-dependent structure of GO, all samples were placed in an oven at 85 ° C for different time periods of 0, 6, 12, and 18 hours to increase mechanical properties. The compression test of heat treated samples reveals that the compressive strength of the printed parts containing 0.5,1, and 1.5 % of GO increased by 151,162 ad 235%, respectively. Scaffolds with the designed pore sizes of 750 microns and a porosity of 40% were printed. Surface hydrophilicity test was performed for all samples showing that the hydrophilicity of the samples increased with increasing GO percentage. The degradation behavior of the samples was evaluated in a PBS environment, and it revealed that by increasing GO, the rate of component degradation increased, but the heat treatment had the opposite effect and decreased the degradation rate. Finally, besides improving biological properties, a significant increase in mechanical properties under compression can introduce the printed scaffolds as a suitable option for bone implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.