A flash of light evokes neural activity in the brain with a delay of 30-100 milliseconds, much of which is due to the slow process of visual transduction in photoreceptors. A moving object can cover a considerable distance in this time, and should therefore be seen noticeably behind its actual location. As this conflicts with everyday experience, it has been suggested that the visual cortex uses the delayed visual data from the eye to extrapolate the trajectory of a moving object, so that it is perceived at its actual location. Here we report that such anticipation of moving stimuli begins in the retina. A moving bar elicits a moving wave of spiking activity in the population of retinal ganglion cells. Rather than lagging behind the visual image, the population activity travels near the leading edge of the moving bar. This response is observed over a wide range of speeds and apparently compensates for the visual response latency. We show how this anticipation follows from known mechanisms of retinal processing.
Nearby retinal ganglion cells often fire action potentials in near synchrony. We have investigated the circuit mechanisms that underlie these correlations by recording simultaneously from many ganglion cells in the salamander retina. During spontaneous activity in darkness, three types of correlations were distinguished: broad (firing synchrony within 40-100 ms), medium (10-50 ms), and narrow (<1 ms). When chemical synaptic transmission was blocked, the broad correlations disappeared, but the medium and narrow correlations persisted. Further analysis of the strength and time course of synchronous firing suggests that nearby ganglion cells share inputs from photoreceptors conveyed through interneurons via chemical synapses (broad correlations), share excitation from amacrine cells via electrical junctions (medium), and excite each other via electrical junctions (narrow). It appears that the firing patterns in the optic nerve are strongly shaped by electrical coupling in the inner retina.
In an expression screen for factors that pattern or induce ventral mesoderm, we isolated a complementary DNA encoding Mix.1, a paired class homeobox gene with no previously known function. Injection of Mix.1 messenger RNA results in extensive blood formation in the whole embryo and transforms dorsal mesoderm to a ventral fate. Mix.1 expression is induced by bone morphogenetic protein-4 (BMP-4), and a dominant inhibitory mutant of Mix.1 can restore a dorsal axis in embryos ventralized by ectopic BMP-4 expression. Mix.1 can form heterodimers with the dorsalizing gene siamois, which encodes a homeodomain protein that is structurally similar to Mix.1. Furthermore, Mix.1 blocks the duplicated axis induced by ectopic siamois expression. Our findings indicate that Mix.1 participates in a BMP-4 signalling pathway to pattern ventral mesoderm, and suggest a model whereby dimerization of homeodomain proteins regulates dorsal-ventral patterning.
The hippocampus is a cortical region thought to play an important role in learning and memory. Most of our knowledge about the detailed organization of hippocampal circuitry responsible for these functions is derived from anatomical studies. These studies present an incomplete picture, however, because the functional character and importance of connections are often not revealed by anatomy. Here, we used a physiological method (photostimulation with caged glutamate) to probe the fine pattern of functional connectivity between the CA3 and CA1 subfields in the mouse hippocampal slice preparation. We recorded intracellularly from CA1 and CA3 pyramidal neurons while scanning with photostimulation across the entire CA3 subfield with high spatial resolution. Our results show that, at a given septotemporal level, nearby CA1 neurons receive synaptic inputs from neighboring CA3 neurons. Thus, the CA3 to CA1 mapping preserves neighbor relations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.