The Software defined network (SDN) controller has such networks universal sight and allows for centralized management and control for the networks. The algorithms of Machine learning used alone or combined with the SDN controller's northbound applications in order to make intelligent SDN. SDN is such potential networking design that blends network's programmability with central administration. The control and the data planes are separated in SDN, and the network with central management point is called SDN controller, which may be programmed and utilized as a brain of the network. Lately, the community of researchers have shown a greater willingness to take advantage of current advances in artificial intelligence to give the SDN best decision making and learning skills. Our research found that combining SDN with Intelligent Supervised Machine Learning (ISML) is very important for performance improvement. ISML is the development of algorithms that can generate broad patterns and assumptions from external source instances in order to portend the predestination of future instances. The ISML algorithms of classification goal is to categorize data based on past information. In data science problems, classification is used rather frequently. To solve such problems, a number of successful approaches were already presented, including rule-based techniques, instance-based techniques, logic-based techniques, and stochastic techniques. This study examined the ISML algorithms' efficiency by checking the precision, accuracy, and with or without SDN recall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.