Semisolid extrusion of metals involves extrusion of metallic alloys with a microstructure consisting of spherical solids in a liquid matrix. In this research, the effect of cooling rate during forward semisolid extrusion on micro structure and mechanical properties of 7075 aluminum was investigated. Semisolid microstructtire was prepared according to the recrystallization and partial melting (RAF) method. Optimum semisolid temperature and holding time which were resulted in a suitable microstructure for specimens were determined at 580 "C for 10 min. Different cooling rates were applied during semisolid extrusion and the resulted mechanical properties were studied. Tensile properties of semisolid extruded rods in T6 condition were also compared with those of conventionally extruded specimen. The results indicate that utilizing optimum values of semisolid extrusion parameters, namely, temperature and time of heating as well as cooling rate severity, brings both the possibility to obtain mechanical properties of conventionally extruded specimens and to get advantages of semisolid forming technique. Experimental results also show that increment of cooling rate and extrusion pressure improves the mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.