Increased demand for railway transportation is creating a need for higher train speeds and axle loads. These, in turn, increase the likelihood of track degradation and failures. Modelling the degradation behaviour of track geometry and development of applicable and effective maintenance strategies has become a challenging concern for railway infrastructure managers. During the last three decades, a number of track geometry degradation and maintenance modelling approaches have been developed to predict and improve the railway track geometry condition. In this paper, existing track geometry measures are identified and discussed. Available models for track geometry degradation are reviewed and classified. Tamping recovery models are also reviewed and discussed to identify the issues and challenges of different available methodologies and models. Existing track geometry maintenance models are reviewed and critical observations on each contribution are provided. The most important track maintenance scheduling models are identified and discussed. Finally, the paper provides directions for further research.
The objective of this study has been to develop an approach to the allocation of an effective maintenance limit for track geometry maintenance that leads to a minimisation of the total annual maintenance cost. A cost model was developed by considering the cost associated with inspection, preventive maintenance, normal corrective maintenance and emergency corrective maintenance. The standard deviation and extreme values of isolated defects of the longitudinal level were used as quality indicators for preventive and corrective maintenance activities. The Monte Carlo technique was used to simulate the track geometry behaviour under different maintenance limit scenarios and the effective limit was determined which minimises the total maintenance cost. The applicability of the model was tested in a case study on the Main Western Line in Sweden. Finally, a sensitivity analysis was carried out on the inspection intervals, the emergency corrective maintenance cost and the maintenance response time. The results show that there is an optimal region for selecting an effective limit. However, by considering the safety aspects in track geometry maintenance planning, it is suggested that the lower bound of the optimal region should be selected.
Tamping is one of the major activities undertaken by railway maintenance managers to recover the track geometry condition. Modelling the effectiveness of tamping along with track geometry degradation is essential for long-term prediction of track geometry behaviour. The aim of this study is to analyse the effect of tamping on the different track geometry measurements, i.e. longitudinal level, alignment and cant, based on inspection car records from a part of the Main Western Line in Sweden. To model recovery after tamping, a probabilistic approach is applied. The track geometry condition before tamping was considered as the dominant factor for modelling the model parameters. Correlation analysis was performed to measure the linear relation between the recoveries of the different geometry measures. The results show a moderate correlation between the recovery of the longitudinal level and that of the cant, and a weak correlation between the recovery of the longitudinal level and that of the alignment. Linear regression and Wiener process were also applied to model track geometry degradation and to obtain degradation rates. The effect of tamping on degradation rate was analysed. It was observed that degradation rate increased after tamping.
This study has been dedicated to the optimization of opportunistic tamping scheduling. The aim of this study has been to schedule tamping activities in such a way that the total maintenance costs and the number of unplanned tamping activities are minimized. To achieve this, the track geometry tamping scheduling problem was defined and formulated as a mixed integer linear programming (MILP) model and a genetic algorithm was used to solve the problem. Both the standard deviation of the longitudinal level and the extreme values of isolated defects were used to characterize the track geometry quality and to plan maintenance activities. The performance of the proposed model was tested on data collected from the Main Western Line in Sweden. The results show that different scenarios for controlling and managing isolated defects will result in optimal scheduling plan. It is also found that to achieve more realistic results, the speed of the tamping machine and the unused life of the track sections should be considered in the model. Moreover, the results show that prediction of geometry condition without considering the destructive effect of tamping will lead to an underestimation of the maintenance needs by 2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.