Compliant flooring represents a promising but understudied strategy for reducing impact force and hip fracture risk due to falls in high-risk environments such as nursing homes, hospitals, gymnasiums, and senior centers. We conducted ''pelvis release experiments'' with young women (n ¼ 15) to determine whether floor stiffness influences peak hip impact force during safe, low-height falls. During the trials, we used a pelvic sling and electromagnet to lift and instantly release the participant from a height of 5 cm above a force plate, which measured the force applied to the hip region during impact. Trials were conducted for rigid floor conditions and with layers of ethylene vinyl acetate foam rubber overlying the floor that we regarded as firm (1.5-cm thick; stiffness ¼ 263 kN/m), semifirm (4.5-cm thick; stiffness ¼ 95 kN/m), semisoft (7.5-cm thick; stiffness ¼ 67 kN/m), and soft (10.5-cm thick; stiffness ¼ 59 kN/m). When compared to the rigid condition, peak hip impact force averaged 8% lower in the firm condition and 15% lower in the semifirm condition. Peak forces were not significantly different between the semifirm, semisoft, and soft floor conditions, indicating that a 4.5 cm-thick foam mat provides nearly the same force attenuation as a 10.5 cm-thick mat. These results support the need for laboratory experiments to measure the effect of floor stiffness on postural stability and for clinical trials to determine the effect of compliant flooring on hip fracture incidence in high-risk environments. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.