New approaches to rapid, simple, in vitro diagnostic immunoassays that do not rely on centralized laboratory facilities are urgently needed for disease diagnosis and to inform treatment strategies. The recent and ongoing COVID-19 pandemic has emphasized that rapid diagnostics are needed to help guide government policies on quarantines, social distancing measures, and community lockdowns. A common approach to developing new immunoassays is to modify existing platforms (e.g., automated ELISA and lateral flow assays) for the new analyte, even though this does not address the drawbacks of existing platforms. An alternate approach is to search for robust assays that have been superseded but could in fact solve important challenges using modern technologies. Immunodiffusion is one such platform based on unique "precipitin ring" patterns formed in gels or paper following interactions between proteins and cognate antibodies in diffusion/reaction systems. Herein, we investigate the microstructure of these precipitin rings using a combination of fluorescence and electron microscopy and also perform a mass spectrometry investigation to determine the proteomic composition of the rings. We observed that the rings were composed of microparticles, which we termed "precipitin complexes", and that these complexes were composed of at least 19 key proteins, including immunoglobulins and complement factors along with a range of plasma proteins, possibly related to immune complexes and/or high-density lipoprotein particles. This information will be useful in developing new in vitro diagnostics using reaction/diffusion systemstechniques that require a single assay step and that only require calibrated length measurements for target protein quantification.
The current study evaluates the migration of benzene, toluene, ethylbenzene, xylene (BTEX) and phthalates into artificial saliva from natural rubber latex (NRL) balloons available for sale in Sri Lanka. It was discovered that at least one BTEX compound migrated from almost all the brands. The migration of four phthalates; diethyl phthalate, dibutyl phthalate, di-isobutyl phthalate and butyl benzyl phthalate were also observed. Migratory levels of BTEX and phthalates in most of the balloon brands were above the permissible levels set by the European Union. Assessment of factors affecting the migratory levels indicated migration under active mouthing conditions and migration from the neck region of the balloons were significantly higher. The migratory levels were observed to decrease with storage time, and in certain brands the BTEX levels decreased below the permissible level. One-way ANOVA indicated no significant differences (p ≥ 0.05) in migratory levels of each individual compound within the same brand for both BTEX and phthalates. When compared among different brands, BTEX levels indicated significant differences (p ≤ 0.05), while phthalate levels were observed to not be significantly different (p ≥ 0.05). A significant difference was also observed (p ≤ 0.05) among the migratory levels of compounds under each test condition evaluated as factors affecting the migratory level. Furthermore, the solvent based colorants added to color the latex were found to be the source of BTEX and phthalates in the NRL balloons.
This study evaluated stimulated emission depletion (STED) microscopy, atomic force microscopy (AFM), and cryogenic scanning electron microscopy (Cryo-SEM), for visualising the morphology and obtaining pore size information of agarose hydrogels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.