The components of the insulin-like growth factor (IGF) axis have been investigated in the normal human thymus. Using ribonuclease protection assays (RPA), IGF-II transcripts were detected in the normal human thymus. By reverse transcriptase polymerase chain reaction (RT-PCR) analyses, promoters P3 and P4 were found to be active in the transcription of IGF2 gene within human thymic epithelial cells (TEC). No IGF-II mRNA could be detected in human lymphoid Jurkat T cells with 30 cycles of RT-PCR. By Northern blot analyses, IGFBP-2 to -6 (but not IGFBP-1) were found to be expressed in TEC with a predominance of IGFBP-4. Interestingly, Jurkat T cells only express IGFBP-2 but at high levels. The type 1 IGF receptor was detected in Jurkat T cells but not in human TEC. The identification of the components of the IGF axis within separate compartments of the human thymus adds further evidence for a role of this axis in the control of T-cell development. The precise influence of thymic IGF axis upon T-cell differentiation and immunological self-tolerance however needs to be further investigated.
Background Insulin and multiple other autoantigens have been implicated in the pathogenesis of autoimmune type 1 diabetes, but the origin of immunological self-reactivity specifically oriented against insulin-secreting islet b-cells remains obscure. The primary objective of the present study was to investigate the hypothesis that a defect in thymic central T-cell selftolerance of the insulin hormone family could contribute to the pathophysiology of type 1 diabetes. This hypothesis was investigated in a classic animal model of type 1 diabetes, the Bio-Breeding (BB) rat.
Background Insulin and multiple other autoantigens have been implicated in the pathogenesis of autoimmune type 1 diabetes, but the origin of immunological self-reactivity specifically oriented against insulin-secreting islet b-cells remains obscure. The primary objective of the present study was to investigate the hypothesis that a defect in thymic central T-cell selftolerance of the insulin hormone family could contribute to the pathophysiology of type 1 diabetes. This hypothesis was investigated in a classic animal model of type 1 diabetes, the Bio-Breeding (BB) rat.
Both during phylogeny and ontogeny the thymus appears as a nodal point between the two major systems of cell-to-cell signaling, the neuroendocrine and immune systems. This review presents the experimental observations which support a dual role in T cell selection played by the thymic repertoire of neuroendocrine polypeptide precursors. Through the mode of cryptocrine intercellular signaling thymic neuroendocrine-related precursors synthesized in thymic epithelial cells have been shown to influence the early steps in T cell differentiation. In addition, thymic neuroendocrine-related polypeptides are a source of self-antigens which are presented by the major histocompatibility system of the thymic epithelium. Preliminary data also suggest that the intrathymic T cell education to neuroendocrine self-antigens is not strictly superimposible to the antigen presentation by dedicated presenting cells. Insulin-like growth factor-II (IGF-II) was identified as one dominant member of the insulin family expressed by thymic epithelial and nurse cells. The intrathymic presentation of IGF-II or IGF-II derived self-antigens is under current investigation. If further confirmed, the central tolerogenic properties of IGF-II could be considered in the elaboration of a strategy for an efficient and safe prevention of insulin-dependent diabetes.Key words Thymus 9 Cryptocrine signaling 9 Neuroendocrine self-antigens. Molecular evolution 9 Developmental biology 9 T cell tolerance Abbreviations IDDM Insulin-dependent diabetes 9 IGF Insulin-like growth factor 9 IGFBP IGF-binding protein -TCR T cell antigen receptor 9 MHC Major histocompatibility complex 9 OT Oxytocin 9 TEC Thymic epithelial cell 9 TNC Thymic nurse cell 9 VP Vasopressin
Thymic epithelial and nurse cells from different species express a repertoire of neuroendocrine polypeptide precursors. This repertoire exerts a dual role in T-lymphocyte selection according to their status either as cryptocrine signals or as neuroendocrine self-antigens of the peptide sequences that are processed from those precursors then presented to pre-T cells. Thymic neuroendocrine self-antigens correspond to peptide sequences highly conserved throughout evolution of their family. Though thymic MHC class I molecules are involved in the processing of thymic neuroendocrine self-antigens, preliminary data show that their presentation to pre-T cells is not allelically restricted. Thymic T-cell education in neuroendocrine families also implies that the structure of a given family may be presented to pre-T cells. Our studies have evidenced the homology between thymic neuroendocrine-related self-antigens and dominant T-cell epitopes of peripheral neuroendocrine signals (neuroendocrine autoantigens). The biochemical difference between neuroendocrine autoantigens and homologous thymic self-antigens might explain the opposite immune responses evoked by those two types of antigens (activation and memory induction vs. tolerogenic effect). Altogether, these studies support the therapeutic use of thymic neuroendocrine self-antigens in reprogramming the immunological self-tolerance that is broken in autoimmune endocrine diseases like insulin-dependent diabetes type I. As recently stated by P. M. Allen in an important review, the fate of developing T lymphocytes in the thymus is influenced by the numerous types of peptidic interactions within the thymic cellular environment. To define the precise nature of thymic cells and naturally occurring biochemical peptide signals involved in positive and negative selection of immature T cells has become a prominent objective for the future research efforts in thymic physiology. This paper will try to show how thymic neuroendocrine-related peptides synthesized and processed within the thymic microenvironment indeed can play a role both in the development of the peripheral T-cell repertoire and in the death of randomly rearranged, self-reactive T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.