This paper presents the design, co-simulation, and measurement of a two-stage broadbandcascaded low noise amplifier (LNA) using resistive terminated architecture. This architecture extends the bandwidth of a low-noise amplifier while maintaining a low NF and high flat gain S 21 . The LNA is designed with planar technology and mounted on an FR4 substrate. The used InGaAs HEMT MGF4918D transistor from Mitsubishi technology has very low noise and operates up to 18 GHz. The reflection coefficient results of the studied LNA are lower than −10 dB. The stability is unconditional over the entire operating band. The measured gain is 14 dB ± 0.75 dB with a minimum NF noise figure of 2.9 ± 0.4 dB. The group delay is 0.605 ± 0.145 ns. The 1 dB compression point is 10.16 dBm, and the third order input intercept point IIP3 is 14.25 dBm. Two-stage cascaded LNA has a total power consumption of 164 mW and occupies an area of 7 × 1.3 cm 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.