https://www.southampton.ac.uk/maths/about/staff/abz1e14.pageWhen the lower-level optimal solution set-valued mapping of a bilevel optimization problem is not singlevalued, we are faced with an ill-posed problem, which gives rise to the optimistic and pessimistic bilevel optimization problems, as tractable algorithmic frameworks. However, solving the pessimistic bilevel optimization problem is far more challenging than the optimistic one; hence, the literature has mostly been dedicated to the latter class of the problem. The Scholtes relaxation has appeared to be one of the simplest and efficient way to solve the optimistic bilevel optimization problem in its Karush-Kuhn-Tucker (KKT) reformulation or the corresponding more general mathematical program with complementarity constraints (MPCC). Inspired by such a success, this paper studies the potential of the Scholtes relaxation in the context of the pessimistic bilevel optimization problem. To proceed, we consider a pessimistic bilevel optimization problem, where all the functions involved are at least continuously differentiable. Then assuming that the lower-level problem is convex, the KKT reformulation of the problem is considered under the Slater constraint qualification. Based on this KKT reformulation, we introduce the corresponding version of the Scholtes relaxation algorithm. We then construct theoretical results ensuring that a sequence of global/local optimal solutions (resp. stationarity points) of the aforementioned Scholtes relaxation converges to a global/local optimal solution (resp. stationarity point) of the KKT reformulation of the pessimistic bilevel optimization. The results are accompanied by technical results ensuring that the Scholtes relaxation algorithm is well-defined or the corresponding parametric optimization can easily be solved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.