<p>Background subtraction is the first and basic stage in video analysis and smart surveillance to extract moving objects. In fact, the background subtraction library (BGSLibrary) was created by Andrews Sobral in 2012, which currently combines 43 background subtraction algorithms from the most popular and widely used in the field of video analysis. Each algorithm has its own characteristics, strengths and weaknesses in extracting moving objects. The evaluation allows the identification of these characteristics and helps researchers to design the best methods. Unfortunately, the literature lacks a comprehensive evaluation of the algorithms included in the library. Accordingly, the present work will evaluate these algorithms in the BGSLibrary through the segmentation performance, execution time and processor, so as to, achieve a perfect, comprehensive, real-time evaluation of the system. Indeed, a background modeling challenge (BMC) dataset was selected using the synthetic video with the presence of noise. Results are presented in tables, columns and foreground masks.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.