The present study focuses on fresh leachates treatment using anaerobic digestion. To overcome the unsuitable raw characteristics, appropriate pretreatment conditions were identified based on Batch tests. A subsequently optimized pretreatment-anaerobic two stages UASB coupled treatment was studied. The performance of the overall coupled treatment was assessed by monitoring volatile fatty acids (VFA), COD and ammonium removal, and biogas performance. Results showed that combining acidity correction to short aeration gives a synergetic effect and allowed appropriate anaerobic start-up conditions. Under continuous aerobic pretreatment-UASB digestion, significant removal of NH+4 (75.87%), COD (19.14%), and VFA (20.3%) were achieved during the aeration step resulting in the total abatement of 88.66%, 83.6% and 70.39% for NH+4, COD, and VFA, respectively. The process allowed good biogas performance up to 2,470 mL biogas/L and 123 mL CH4/gCOD removed, with gradual improvement from the first to the second UASB reactor. Inlet COD and VFA feeding rate seemed to be the main key parameters with 45.37 g COD/L.d and 18.43 g VFA/L.d as a critical threshold. Therefore, the anaerobic digestion of high COD leachates is highly feasible and the aerobic–anaerobic coupled treatment is a promising technical scenario that deserves further studies.
The Biochemical Methane Potential (BMP) of fresh leachate and domestic wastewaters codigestion was determined by laboratory Bach Tests at 35ºC over a period of 90 d using a wide range of leachates volumetric ratios from 0% to 100%. To simulate wastewaters plant treatment step, all the ratios were first air stripped for 48 h before anaerobic incubation. The kinetic of biogas production was assessed using modified Gompertz model and exponential equation. The results obtained showed that cumulative biogas production was insignificant in the case of wastewaters monodigestion while the codigestion significantly improves the BMP. Air stripping pretreatment had positive effect on both ammonium concentration and volatiles fatty acids with reduction up to 75% and 42%, respectively. According to the Modified Gompertz model, the optimal anaerobic co-digestion conditions both in terms of maximal biogas potential, start-up period and maximum daily biogas production rate, could be achieved within large leachate volumetric ratios from 25% to 75% with a maximum BMP value of 438.42 mL/g volatile solid at 50% leachate ratio. The positive effect of codigestion was attributed to a dilution effect of chemical oxygen demand and volatile fatty acid concentrations to optimal range that was between 11.7 to 32.3 gO2/L and 2.1 to 7.4 g/L, respectively. These results suggested that the treatment of fresh leachate by their dilution and co digestion at wastewaters treatment plants could be a promising alternative for both energetic and treatment purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.