Ratio-dependent predator-prey models have been increasingly favored by field ecologists where predator-prey interactions have to be taken into account the process of predation search. In this paper we study the conditions of the existence and stability properties of the equilibrium solutions in a reaction-diffusion model in which predator mortality is neither a constant nor an unbounded function, but it is increasing with the predator abundance. We show that analytically at a certain critical value a diffusion driven (Turing type) instability occurs, i.e. the stationary solution stays stable with respect to the kinetic system (the system without diffusion). We also show that the stationary solution becomes unstable with respect to the system with diffusion and that Turing bifurcation takes place: a spatially non-homogenous (non-constant) solution (structure or pattern) arises. A numerical scheme that preserve the positivity of the numerical solutions and the boundedness of prey solution will be presented. Numerical examples are also included.
Abstract. The primary aim of this paper is to answer the question: what are the highest-order five-or nine-point compact finite difference schemes? To answer this question, we present several simple derivations of finite difference schemes for the one-and two-dimensional Poisson equation on uniform, quasi-uniform, and non-uniform face-to-face hyper-rectangular grids and directly prove the existence or non-existence of their highest-order local accuracies. Our derivations are unique in that we do not make any initial assumptions on stencil symmetries or weights. For the one-dimensional problem, the derivation using the three-point stencil on both uniform and non-uniform grids yields a scheme with arbitrarily high-order local accuracy. However, for the two-dimensional problem, the derivation using the corresponding five-point stencil on uniform and quasi-uniform grids yields a scheme with at most second-order local accuracy, and on non-uniform grids yields at most first-order local accuracy. When expanding the five-point stencil to the nine-point stencil, the derivation using the nine-point stencil on uniform grids yields at most sixth-order local accuracy, but on quasi-and non-uniform grids yields at most fourth-and third-order local accuracy, respectively.
We introduce a piecewise P2-nonconforming quadrilateral finite element. First, we decompose a convex quadrilateral into the union of four triangles divided by its diagonals. Then the finite element space is defined by the set of all piecewise P2-polynomials that are quadratic in each triangle and continuously differentiable on the quadrilateral. The degrees of freedom (DOFs) are defined by the eight values at the two Gauss points on each of the four edges plus the value at the intersection of the diagonals. Due to the existence of one linear relation among the above DOFs, it turns out the DOFs are eight. Global basis functions are defined in three types: vertex-wise, edge-wise, and element-wise types. The corresponding dimensions are counted for both Dirichlet and Neumann types of elliptic problems. For second-order elliptic problems and the Stokes problem, the local and global interpolation operators are defined. Also error estimates of optimal order are given in both broken energy and L 2 (Ω) norms. The proposed element is also suitable to solve Stokes equations. The element is applied to approximate each component of velocity fields while the discontinuous P1-nonconforming quadrilateral element is adopted to approximate the pressure. An optimal error estimate in energy norm is derived. Numerical results are shown to confirm the optimality of the presented piecewise P2-nonconforming element on quadrilaterals.Mathematics Subject Classification. 65N30, 76M10.
On adaptively refined quadrilateral or hexahedral meshes, one usually employs constraints on degrees of freedom to deal with hanging nodes. How these constraints are constructed is relatively straightforward for conforming finite element methods: The constraints are used to ensure that the discrete solution space remains a subspace of the continuous space. On the other hand, for nonconforming methods, this guiding principle is not available and one needs other ways of ensuring that the discrete space has desirable properties. In this paper, we investigate how one would construct hanging node constraints for nonconforming elements, using the Douglas-Santos-Sheen-Ye (DSSY) element as a prototypical case. We identify three possible strategies, two of which lead to provably convergent schemes with different properties. For both of these, we show that the structure of the constraints differs qualitatively from the way constraints are usually dealt with in the conforming case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.