We study the existence of positive weak solutions to a fourth-order semilinear elliptic equation with Navier boundary conditions and a positive, increasing and convex source term. We also prove the uniqueness of extremal solutions. In particular, we generalize results of Mironescu and Rădulescu for the bi-Laplacian operator.
In this work, we study the weighted Kirchhoff problem − g ∫ B σ ( x ) ∣ ∇ u ∣ N d x div ( σ ( x ) ∣ ∇ u ∣ N − 2 ∇ u ) = f ( x , u ) in B , u > 0 in B , u = 0 on ∂ B , \left\{\begin{array}{ll}-g\left(\mathop{\displaystyle \int }\limits_{B}\sigma \left(x)| \nabla u\hspace{-0.25em}{| }^{N}{\rm{d}}x\right){\rm{div}}\left(\sigma \left(x)| \nabla u\hspace{-0.25em}{| }^{N-2}\nabla u)=f\left(x,u)& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}B,\\ u\gt 0& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}B,\\ u=0& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}\partial B,\end{array}\right. where B B is the unit ball of R N {{\mathbb{R}}}^{N} , σ ( x ) = log e ∣ x ∣ N − 1 \sigma \left(x)={\left(\log \left(\frac{e}{| x| }\right)\right)}^{N-1} , the singular logarithm weight in the Trudinger-Moser embedding, and g g is a continuous positive function on R + {{\mathbb{R}}}^{+} . The nonlinearity is critical or subcritical growth in view of Trudinger-Moser inequalities. We first obtain the existence of a solution in the subcritical exponential growth case with positive energy by using minimax techniques combined with the Trudinger-Moser inequality. In the critical case, the associated energy does not satisfy the condition of compactness. We provide a new condition for growth, and we stress its importance to check the compactness level.
Given Ω bounded open regular set of ℝ 2 and x 1 , x 2 , ..., x m Ω, we give a sufficient condition for the problemto have a positive weak solution in Ω with u = 0 on ∂Ω, which is singular at each x i as the parameters r, l > 0 tend to 0 and where f(u) is dominated exponential nonlinearities functions. 2000 Mathematics Subject Classification: 35J60; 53C21; 58J05.
In this paper, we consider the solution of evolutionary Wente's problem with the wave operator in R + × R 2 . We study in particular the best constant involving the L ∞ norm of these solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.