In nickel-based superalloys, temperatures related to the formation or the dissolution of the different types of γ' precipitates are important parameters for optimizing the mechanical properties of components but also for developing models which can reproduce the kinetics of their phase transformation. We showed that the electrical resistivity variations during heat treatment of the N18 superalloy was sufficient to monitor the kinetics related to secondary and tertiary γ' precipitates. In particular, the effects of the heating rate and the initial microstructure on the dissolution kinetics of the γ' phase were investigated. Experimental results were also compared to outputs of a precipitation model developed for the N18 alloy showing that in situ electrical resistivity measurements can be used for calibration and validation purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.