We connect density fluctuations in liquid water to lengthscale dependent crossover in hydrophobic hydration. Specifically, we employ indirect umbrella sampling (INDUS) simulations to characterize density fluctuations in observation volumes of various sizes and shapes in water and as a function of temperature and salt concentration. Consistent with previous observations, density fluctuations are Gaussian in small molecular scale volumes, but they display non-Gaussian “low-density fat tails” in larger volumes. These non-Gaussian tails are indicative of the proximity of water to its liquid to vapor phase transition and have implications on biomolecular interactions and function. We show that the onset of non-Gaussian fluctuations in large volumes is accompanied by the formation of a cavity in the observation volume. We develop a model that uses the physics of cavity-water interface formation as a key ingredient and show that it captures the nature of non-Gaussian density fluctuations over a broad region in water and in salt solutions. We discuss the limitations of this model in the very low density region of the distribution. Our calculations provide new insights into the origins of non-Gaussian density fluctuations in water and their connections to lengthscale dependent crossover in hydrophobic hydration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.