This study proposes a new representation of discrete Non-linear AutoRegressive with eXogenous inputs (NARX) model by developing its coefficients associated to the input, the output, the crossed product, the exogenous product and the autoregressive product on five independent Laguerre orthonormal bases. The resulting model, entitled NARX-Laguerre, ensures a significant parameter number reduction with respect to the NARX model. However, this reduction is still subject to an optimal choice of the Laguerre poles defining the five Laguerre bases. Therefore, the authors propose to use the genetic algorithm to optimise the NARX-Laguerre poles, based on the minimisation of the normalised mean square error. The performances of the resulting NARX-Laguerre model and the proposed optimisation algorithm are validated by numerical simulations and tested on the benchmark Continuous Stirred Tank Reactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.