Abstract:In this paper, we investigate the problem of n-jobs scheduling in an m-machine permutation flowshop with exact time lags between consecutive operations of each job. The exact time lag is defined as the time elapsed between every couple of successive operations of the same job which is equal to a prescribed value. The aim is to find a feasible schedule that minimises the total tardiness and earliness. We propose three mathematical formulations, which are then solved by running the commercial software CPLEX to provide an optimal solution for small size problems. As the problem is shown to be strongly NP-hard, we propose new improved upper and lower bounds useful for large size problems. We then evaluate their effectiveness through an extensive computational experiment.
In this paper, we consider the problem of scheduling on two-machine permutation flowshop with minimal time lags between consecutive operations of each job. The aim is to find a feasible schedule that minimizes the total tardiness. This problem is known to be NP-hard in the strong sense. We propose two mixed-integer linear programming (MILP) models and two types of valid inequalities which aim to tighten the models' representations. One of them is based on dominance rules from the literature. Then, we provide the results of extensive computational experiments used to measure the performance of the proposed MILP models. They are shown to be able to solve optimally instances until the size 40-job and even several larger problem classes, with up to 60 jobs. Furthermore, we can distinguish the effect of the minimal time lags and the inclusion of the valid inequalities in the basic MILP model on the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.