Objective-Oxidative stress is believed to play a key role in cardiovascular disorders. Thioredoxin (Trx) is an oxidative stress-limiting protein with anti-inflammatory and antiapoptotic properties. Here, we analyzed whether Trx-1 might exert atheroprotective effects by promoting macrophage differentiation into the M2 anti-inflammatory phenotype. Methods and Results-Trx-1 at 1 mg/mL induced downregulation of p16INK4a and significantly promoted the polarization of anti-inflammatory M2 macrophages in macrophages exposed to interleukin (IL)-4 at 15 ng/mL or IL-4/IL-13 (10 ng/mL each) in vitro, as evidenced by the expression of the CD206 and IL-10 markers. In addition, Trx-1 induced downregulation of nuclear translocation of activator protein-1 and Ref-1, and significantly reduced the lipopolysaccharide-induced differentiation of inflammatory M1 macrophages, as indicated by the decreased expression of the M1 cytokines, tumor necrosis factor- and monocyte chemoattractant protein-1. Consistently, Trx-1 administered to hyperlipoproteinemic ApoE2.Ki mice at 30 mg/30 g body weight challenged either with lipopolysaccharide at 30 mg/30 g body weight or with IL-4 at 500 ng/30 g body weight significantly induced the M2 phenotype while inhibiting differentiation of macrophages into the M1 phenotype in liver and thymus. ApoE2.Ki mice challenged once weekly with lipopolysaccharide for 5 weeks developed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. In contrast, however, daily injections of Trx-1 shifted the phenotype pattern of lesional macrophages in these animals to predominantly M2 over M1, and the aortic lesion area was significantly reduced (from 100%18% to 62.8%9.8%; n58; P0.01). Consistently, Trx-1 colocalized with M2 but not with M1 macrophage markers in human atherosclerotic vessel specimens. Conclusion-The ability of Trx-1 to promote differentiation of macrophages into an alternative, anti-inflammatory phenotype may explain its protective effects in cardiovascular diseases. These data provide novel insight into the link between oxidative stress and cardiovascular diseases.
Macrophages play a pivotal role in the pathophysiology of atherosclerosis. These cells express cathepsin L (CatL), a cysteine protease that has been implicated in atherogenesis and the associated arterial remodeling. In addition, macrophages highly express peroxisome proliferator-activated receptor (PPAR) ␥, a transcription factor that regulates numerous genes important for lipid and lipoprotein metabolism, for glucose homeostasis, and inflammation. Hence, PPAR␥ might affect macrophage function in the context of chronic inflammation such as atherogenesis. In the present study, we examined the effect of PPAR␥ activation on the expression of CatL in human monocyte-derived macrophages (HMDM). Activation of PPAR␥ by the specific agonist GW929 concentration-dependently increased the levels of CatL mRNA and protein in HMDM. By promoter analysis, we identified a functional PPAR response element-like sequence that positively regulates CatL expression. In addition, we found that PPAR␥-induced CatL promotes the degradation of Bcl2 without affecting Bax protein levels. Consistently, degradation of Bcl2 could be prevented by a specific CatL inhibitor, confirming the causative role of CatL. PPAR␥-induced CatL was found to decrease autophagy through reduction of beclin 1 and LC3 protein levels. The reduction of these proteins involved in autophagic cell death was antagonized either by the CatL inhibitor or by CatL knockdown. In conclusion, our data show that PPAR␥ can specifically induce CatL, a proatherogenic protease, in HMDM. In turn, CatL inhibits autophagy and induces apoptosis. Thus, the proatherogenic effect of CatL could be neutralized by apoptosis, a beneficial phenomenon, at least in the early stages of atherosclerosis.
PPARδ +294T/C polymorphism was investigated in diabetics, in normolipidemic healthy controls, in dyslipidemic and nondyslipidemic coronary artery disease patients but never in ischemic stroke patients. The aim of this study was to explore, for the first time, the relationship between the genetic polymorphism of PPARδ and the risk of ischemic stroke among patients with diabetes. The study group consisted of 196 patients with ischemic stroke and 192 controls. Plasma concentrations of total cholesterol, triglycerides, low-, and high-density lipoprotein did not differ significantly between subjects carrying the TT genotype and those carrying the CC/TC genotype in both ischemic stroke patients (with or without diabetes) and control groups. The +294C allele (CC + CT genotypes) as compared with TT genotypes was found to be higher in total ischemic stroke patients than in controls. On the other hand, no interaction between diabetes and PPAR +294T/C polymorphism on the risk of ischemic stroke was found (p = 0.089). The PPARδ +294T/C polymorphism was associated with the risk of ischemic stroke in Tunisian subjects. This polymorphism has no influence on plasma lipoprotein concentrations and body mass index either in healthy subjects or in ischemic stroke patients with or without diabetes both in males and females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.