Currently, the path planning problem is one of the most researched topics in autonomous robotics. That is why finding a safe path in a cluttered environment for a mobile robot is an important requirement for the success of any such mobile robot project. In this work, a developed algorithm based on free segments and a turning point strategy for solving the problem of robot path planning in a static environment is presented. The aim of the turning point approach is to search a safe path for the mobile robot, to make the robot moving from a starting position to a destination position without hitting obstacles. This proposed algorithm handles two different objectives which are the path safety and the path length. In addition, a robust control law which is called sliding mode control is proposed to control the stabilization of an autonomous mobile robot to track a desired trajectory. Finally, simulation results show that the developed approach is a good alternative to obtain the adequate path and demonstrate the efficiency of the proposed control law for robust tracking of the mobile robot.
Purpose
The purpose of this paper is to look at the problem of fault tolerant control (FTC) for discrete time nonlinear system described by Interval Type-2 Takagi–Sugeno (IT2 TS) fuzzy model subjected to stochastic noise and actuator faults.
Design/methodology/approach
An IT2 fuzzy augmented state observer is first developed to estimate simultaneously the system states and the actuator faults since this estimation is required for the design of the FTC control law. Furthermore, based on the information of the states and the faults estimate, an IT2 fuzzy state feedback controller is conceived to compensate for the faults effect and to ensure a good tracking performance between the healthy system and the faulty one. Sufficient conditions for the existence of the IT2 fuzzy controller and the IT2 fuzzy observer are given in terms of linear matrix inequalities which can be solved using a two-step computing procedure.
Findings
The paper opted for simulation results which are applied to the three-tank system. These results are presented to illustrate the effectiveness of the proposed FTC strategy.
Originality/value
In this paper, the problem of active FTC design for noisy and faulty nonlinear system represented by IT2 TS fuzzy model is treated. The developed IT2 fuzzy fault tolerant controller is designed such that it can guarantee the stability of the closed-loop system. Moreover, the proposed controller allows to accommodate for faults, presents a satisfactory state tracking performance and outperforms the traditional type-1 fuzzy fault tolerant controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.