International audienceChains of magnetosomes extracted from magnetotactic bacteria are shown to be highly efficient for alternative magnetic field cancer therapy. The viability of MDA-MB-231 breast cancer cells is relatively unaffected by the presence of less than ∼ 1 mg of chains of magnetosomes. When these cells are exposed to an oscillating magnetic field of frequency 183 kHz and field strengths of 20 to 60 mT, up to 100 % of them are destroyed. We show that it is possible to fully eradicate a tumor xeno-greffed on a mouse by administering a suspension containing ∼ 1 mg of chains of magnetosomes within the tumor and by exposing the mouse to three heat cycles of 20 minutes, during which the tumor temperature is raised to ∼ 43°C. We demonstrate the higher efficiency of the chains of magnetosomes compared with various other materials, i. e. whole inactive magnetotactic bacteria, individual magnetosomes not organized in chains and two different types of chemically synthesized nanoparticles currently tested for alternative magnetic field cancer therapy. The efficiency of the chains of magnetosomes is attributed to three factors, (i), a high magnetosome specific absorption rate (SAR), (ii), a homogenous distribution of the chains of magnetosomes within the tumor yielding uniform heating and (iii), the faculty of the chains of magnetosomes to penetrate within the cancer cells following the application of the alternative magnetic field, which enables intra-cellular heating. Biodistribution studies reveal that chains of magnetosomes administered directly within xeno-greffed breast tumors progressively leave the tumors during the 14 days following their administration and are then eliminated in the feces
We review the most recent and significant results published in the field of magnetotactic bacteria (MTB), in particular data relating to the use of bacterial magnetosomes in magnetic hyperthermia for the treatment of tumours. We review different methods for cultivating MTB and preparing suspensions of bacterial magnetosomes. As well as the production of magnetosomes, we also review key data on the toxicity of the magnetosomes as well as their heating and anti-tumour efficiencies. The toxicity and efficiency of magnetosomes needs to be understood and the risk-benefit ratio with which to evaluate their use in the magnetic hyperthermia treatment of tumours needs to be measured.
Chains of magnetosomes isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria by sonication at 30 W during 2 h are tested for magnetic hyperthermia treatment of tumors. These chains are composed of magnetosomes, which are bound to each other by a filament made of proteins. When they are incubated in the presence of cancer cells and exposed to an alternating magnetic field of frequency 198 kHz and average magnetic field strength of 20 or 30 mT, they produce efficient inhibition of cancer cell proliferation. This behavior is explained by a high cellular internalization, a good stability in solution and a homogenous distribution of the magnetosome chains, which enables efficient heating. When the chains are heated during 5 h at 90°C in the presence of 1% SDS, the filament binding the magnetosomes together is denatured and individual magnetosomes are obtained. By contrast to the chains of magnetosomes, the individual magnetosomes are prone to aggregation, are not stable in solution and do not produce efficient inhibition of cancer cell proliferation under application of an alternating magnetic field.
There are longstanding and ongoing controversies about the abiotic or biological origin of nanocrystals of magnetite. On Earth, magnetotactic bacteria perform biomineralization of intracellular magnetite nanoparticles under a controlled pathway. These bacteria are ubiquitous in modern natural environments. However, their identification in ancient geological material remains challenging. Together with physical and mineralogical properties, the chemical composition of magnetite was proposed as a promising tracer for bacterial magnetofossil identification, but this had never been explored quantitatively and systematically for many trace elements. Here, we determine the incorporation of 34 trace elements in magnetite in both cases of abiotic aqueous precipitation and of production by the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1. We show that, in biomagnetite, most elements are at least 100 times less concentrated than in abiotic magnetite and we provide a quantitative pattern of this depletion. Furthermore, we propose a previously unidentified method based on strontium and calcium incorporation to identify magnetite produced by magnetotactic bacteria in the geological record.
In this study, biologically synthesized iron oxide nanoparticles, called magnetosomes, are made fully biocompatible by removing potentially toxic organic bacterial residues such as endotoxins at magnetosome mineral core surfaces and by coating such surface with poly-L-lysine, leading to magnetosomes-poly-L-lysine (M-PLL). M-PLL antitumor efficacy is compared with that of chemically synthesized iron oxide nanoparticles (IONPs) currently used for magnetic hyperthermia. M-PLL and IONPs are tested for the treatment of glioblastoma, a dreadful cancer, in which intratumor nanoparticle administration is clinically relevant, using a mouse allograft model of murine glioma (GL-261 cell line). A magnetic hyperthermia treatment protocol is proposed, in which 25 µg in iron of nanoparticles per mm3 of tumor are administered and exposed to 11 to 15 magnetic sessions during which an alternating magnetic field of 198 kHz and 11 to 31 mT is applied for 30 minutes to attempt reaching temperatures of 43-46 °C. M-PLL are characterized by a larger specific absorption rate (SAR of 40 W/gFe compared to 26 W/gFe for IONPs as measured during the first magnetic session), a lower strength of the applied magnetic field required for reaching a target temperature of 43-46 °C (11 to 27 mT compared with 22 to 31 mT for IONPs), a lower number of mice re-administered (4 compared to 6 for IONPs), a longer residence time within tumours (5 days compared to 1 day for IONPs), and a less scattered distribution in the tumour. M-PLL lead to higher antitumor efficacy with full tumor disappearances achieved in 50% of mice compared to 20% for IONPs. This is ascribed to better ability of M-PLL, at equal iron concentrations, to maintain tumor temperatures at 43-46°C over a longer period of times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.