Monitoring students' level of engagement during learning activities is an important challenge in the development of tutoring interventions. In this paper, we explore the feasibility of using electroencephalographic signals (EEG) as a tool to monitor the mental engagement index of novice medicine students during a reasoning process. More precisely, the objectives were first, to track students' mental engagement evolution in order to investigate whether there were particular sections within the learning environment that aroused the highest engagement level among the students, and, if so, did these sections have an impact on learners' performance. Experimental analyses showed the same trends in the different resolution phases as well as across the different regions of the environments. However, we noticed a higher engagement index during the treatment identification phase since it aroused more mental effort. Moreover statistically significant effects were found between mental engagement and students' performance.
In this paper we seek to model the users' experience within an interactive learning environment. More precisely, we are interested in assessing three extreme trends in the interaction experience, namely flow (a perfect immersion within the task), stuck (a difficulty to maintain focused attention) and off-task (a drop out from the task). We propose a hierarchical probabilistic framework using a dynamic Bayesian network to simultaneously assess the probability of experiencing each trend, as well as the emotional responses occurring subsequently. The framework combines three-modality diagnostic variables that sense the learner's experience including physiology, behavior and performance, predictive variables that represent the current context and the learner's profile, and a dynamic structure that tracks the temporal evolution of the learner's experience. We describe the experimental study conducted to validate our approach. A protocol was established to elicit the three target trends as 44 participants interacted with three learning environments involving different cognitive tasks. Physiological activities (electroencephalography, skin conductance and blood volume pulse), patterns of the interaction, and performance during the task were recorded. We demonstrate that the proposed framework outperforms conventional non-dynamic modeling approaches such as static Bayesian networks, as well as three nonhierarchical formalisms including naive Bayes classifiers, decision trees and support vector machines.
This paper reports on the feasibility of using eye tracking as a tool for students' performance assessment in a medical serious game. We are particularly interested in analyzing the relationship between learners' visual behaviour and their performance while solving medical cases. The objective of this study is twofold. First, we analyze how the students visually explore the learning environment across different areas of interest. Second, we examine whether static and dynamic eye tracking metrics can have an impact on students' reasoning performance. Results revealed statistically significant associations between eye movement metrics and students' outcomes. Particularly dynamic metrics better reflected students' analytical reasoning abilities. Our findings have implications for the educational technology community seeking to gain a deeper understanding of the students' learning experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.