Inorganic fullerene-(IF)-like nanoparticles made of metal dichalcogenides (IF-MoS 2 , IF-WS 2 ) have been known to be effective as anti-wear and friction modifier additives under boundary lubrication. The lubrication mechanism of these nanoparticles has been widely investigated in the past and it is now admitted that their lubrication properties are attributed to a gradual exfoliation of the external sheets of the particles during the friction process leading to their transfer onto the asperities of the reciprocating surfaces. However, the chemical interaction between these molecular sheets and the rubbing surfaces has so far never been investigated in detail. In this study, the tribochemistry of the IF nanoparticles was carefully investigated. A series of friction test experiments on different rubbing surfaces (Steel, Alumina, Diamond-Like Carbon) were performed with IF-MoS 2 nanoparticles. High-resolution transmission electron microscopy, scanning electron microscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the tribostressed areas on rubbing surfaces. A tribofilm composed of hexagonal 2H-MoS 2 nanosheets was only observed on the steel surface. This transfer film was found to be incorporated into an iron oxide layer. A tribochemical reaction between the 2H-MoS 2 nanolayers and the iron/iron oxide has been proposed as an explanation for the adhesion of this tribofilm. The tribochemical mechanism of the IF-MoS 2 nanoparticles is discussed in this article.
Inorganic fullerene-(IF)-like nanoparticles made of metal dichalcogenides (IF-MoS 2 , IF-WS 2 ) have been known to be effective as anti-wear and friction modifier additives under boundary lubrication. The lubrication mechanism of these nanoparticles has been widely investigated in the past and even if the exfoliation and third body transfer of molecular sheets onto the asperities constitute the prevalent mechanism for the improved tribological behavior of IF nanoparticles, it has also been suggested that a rolling friction process could also play a role for well crystallized and spherical particles. In this study, in situ Transmission Electron Microscopy (TEM) observations of the behavior of single IF-MoS 2 nanoparticles were conducted using a sample holder that combines TEM and Atomic Force Microscopy (AFM) which simultaneously can apply normal and shear loads. It was shown that depending on the test conditions, either a rolling process or a sliding of the fullerenes could be possible. These in situ TEM observations are the first carried out with IF nanoparticles.
The deformation and degradation behavior of single inorganic fullerenes nanoparticles of MoS 2 under compression and shear has been observed in real time using a high-resolution transmission electron microscope equipped with a nanoindentation holder. The MoS 2 nanoparticles were compressed using a nanoindenter and a truncated diamond tip. For the first time, real time imaging of the deformation of individual nanoparticles clearly shows first orientation changes in the particle shape during loading process followed by a large deformation and the exfoliation of the outer sheets of the fullerene nested structure. Exfoliation was observed for a contact pressure estimated at 1 GPa. Additional sliding tests performed with the nanoindenter gave evidence for a rolling process for lower contact pressures up to 100 MPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.