Although the power conversion efficiency (PCE) of inorganic perovskite‐based solar cells (PSCs) is considerably less than that of organic‐inorganic hybrid PSCs due to their wider bandgap, inorganic perovskites are great candidates for the front cell in tandem devices. Herein, the low‐temperature solution‐processed two‐terminal hybrid tandem solar cell devices based on spectrally matched inorganic perovskite and organic bulk heterojunction (BHJ) are demonstrated. By matching optical properties of front and back cells using CsPbI2Br and PTB7‐Th:IEICO‐4F BHJ as the active materials, a remarkably enhanced stabilized PCE (18.04%) in the hybrid tandem device as compared to that of the single‐junction device (9.20% for CsPbI2Br and 10.45% for PTB7‐Th:IEICO‐4F) is achieved. Notably, the PCE of the hybrid tandem device is thus far the highest PCE among the reported tandem devices based on perovskite and organic material. Moreover, the long‐term stability of inorganic perovskite devices under humid conditions is improved in the hybrid tandem device due to the hydrophobicity of the PTB7‐Th:IEICO‐4F back cell. In addition, the potential promise of this type of hybrid tandem device is calculated, where a PCE of as much as ≈28% is possible by improving the external quantum efficiency and reducing energy loss in the sub‐cells.
While colloidal quantum dot photovoltaic devices (CQDPVs) can achieve a power conversion efficiency (PCE) of ≈12%, their insufficient optical absorption in the near‐infrared (NIR) regime impairs efficient utilization of the full spectrum of visible light. Here, high‐efficiency, solution‐processed, hybrid series, tandem photovoltaic devices are developed featuring CQDs and organic bulk heterojunction (BHJ) photoactive materials for front‐ and back‐cells, respectively. The organic BHJ back‐cell efficiently harvests the transmitted NIR photons from the CQD front‐cell, which reinforces the photon‐to‐current conversion at 350–1000 nm wavelengths. Optimizing the short‐circuit current density balance of each sub‐cell and creating a near ideal series connection using an intermediate layer achieve a PCE (12.82%) that is superior to that of each single‐junction device (11.17% and 11.02% for the CQD and organic BHJ device, respectively). Notably, the PCE of the hybrid tandem device is the highest among the reported CQDPVs, including single‐junction devices and tandem devices. The hybrid tandem device also exhibits almost negligible degradation after air storage for 3 months. This study suggests a potential route to improve the performance of CQDPVs by proper hybridization with NIR‐absorbing photoactive materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.