Immune checkpoint inhibitors targeting the programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) axis have been remarkably successful in inducing tumor remissions in several human cancers, yet a substantial number of patients do not respond to treatment. Because this may be partially due to the mechanisms giving rise to high PD-L1 expression within a patient, it is highly relevant to fully understand these mechanisms. In this study, we conduct a bioinformatic analysis to quantify the relative importance of transcription factor (TF) activity, microRNAs (miRNAs) and mutations in determining PD-L1 (CD274) expression at mRNA level based on data from the Cancer Genome Atlas. To predict individual CD274 levels based on TF activity, we developed multiple linear regression models by taking the expression of target genes of the TFs known to directly target PD-L1 as independent variables. This analysis showed that IRF1, STAT1, NFKB and BRD4 are the most important regulators of CD274 expression, explaining its mRNA levels in 90–98% of the patients. Because the remaining patients had high CD274 levels independent of these TFs, we next investigated whether mutations associated with increased CD274 mRNA levels, and low levels of miRNAs associated with negative regulation of CD274 expression could cause high CD274 levels in these patients. We found that mutations or miRNAs offered an explanation for high CD274 levels in 81–100% of the underpredicted patients. Thus, CD274 expression is largely explained by TF activity, and the remaining unexplained cases can largely be explained by mutations or low miRNA abundance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.